Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (11): 134-146.
Online:
2024-11-10
Published:
2024-11-12
CLC Number:
GUO Fang, XIE Yu. Research progress of textile-based flexible solar cells[J]. Advanced Textile Technology, 2024, 32(11): 134-146.
郭芳, 解宇. 柔性织物基太阳能电池的研究进展[J]. 现代纺织技术, 2024, 32(11): 134-146.
[1] KE H, GAO M, LI S, et al. Advances and future prospects of wearable textile‐ and fiber‐based solar cells[J]. Solar RRL, 2023, 7(15): 2300109. [2] XU T, DU H, LIU H, et al. Advanced nanocellulose‐based composites for flexible functional energy storage devices[J]. Advanced Materials, 2021, 33(48): 2101368. [3] 梁嘉文,李婷婷,严占林,等.可穿戴设备的能源供给研究进展[J].现代纺织技术,2023,31(1):28-39. LIANG J W, LI T T, YAN Z L, et al. Research progress on energy supply of wearable devices[J]. Advanced Textile Technology, 2023, 31(1): 28-39. [4] CHAE Y, PARK J T, KOH J K, et al. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires[J]. Materials Science and Engineering: B, 2013, 178(17): 1117-1123. [5] LIU X, ZI W, (FRANK) LIU S. P-Layer bandgap engineering for high efficiency thin film silicon solar cells[J]. Materials Science in Semiconductor Processing, 2015, 39: 192-199. [6] TAVAKOLI M M, TSUI K H, ZHANG Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures[J]. ACS Nano, 2015, 9(10): 10287-10295. [7] SCHUBERT M B, WERNER J H. Flexible solar cells for clothing[J]. Materials Today, 2006, 9(6): 42-50. [8] SATHARASINGHE A, HUGHES-RILEY T, DIAS T. A review of solar energy harvesting electronic textiles[J]. Sensors, 2020, 20(20): 5938. [9] ZHU R, ZHANG Z, LI Y. Advanced materials for flexible solar cell applications[J]. Nanotechnology Reviews, 2019, 8(1): 452-458. [10] YANG D, YANG R, PRIYA S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications[J]. Angewandte Chemie International Edition, 2019, 58(14): 4466-4483. [11] BANDARA T M W J, HANSADI J M C, BELLA F. A review of textile dye-sensitized solar cells for wearable electronics[J]. Ionics, 2022, 28(6): 2563-2583. [12] 吕东方,曹漪玟,宋立新,等.PEDOT:PSS在柔性可穿戴太阳能电池中的应用进展[J].现代纺织技术,2023,31(1):40-53. LÜ D F, CAO Y M, SONG L X, et al. Application progress on PEDOT: PSS in flexible wearable solar cells[J]. Advanced Textile Technology, 2023, 31(1): 40-53. [13] ZHANG N, CHEN J, HUANG Y, et al. A wearable all‐solid photovoltaic textile[J]. Advanced Materials, 2016, 28(2): 263-269. [14] ZHANG Z, LI X, GUAN G, et al. A lightweight polymer solar cell textile that functions when illuminated from either side[J]. Angewandte Chemie International Edition, 2014, 53(43): 11571-11574. [15] VITTAL R, HO K C. Zinc oxide based dye-sensitized solar cells: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 920-935. [16] LEE S H, KWON J, KIM D Y, et al. Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array[J]. Solar Energy Materials and Solar Cells, 2015, 132: 47-55. [17] SAHITO I A, SUN K C, ARBAB A A, et al. Graphene coated cotton fabric as textile structured counter electrode for DSSC[J]. Electrochimica Acta, 2015, 173: 164-171. [18] MEMON A A, ARBAB A A, SAHITO I A, et al. Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs[J]. Solar Energy, 2017, 150: 521-531. [19] 韩宜君,许君,畅琪琪,等.纺织基柔性染料敏化太阳能电池的研究进展[J].纺织学报, 2022, 43(5): 185-194. HAN Y J, XU J, CHANG Q Q, et al. Research progress in textile-based flexible dye-sensitized solar cells[J]. Journal of Textile Research, 2022, 43(5): 185-194. [20] GONG J, LIANG J, SUMATHY K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5848-5860. [21] DWIVEDI G, MUNJAL G, BHASKARWAR A N, et al. Dye-sensitized solar cells with polyaniline: A review[J]. Inorganic Chemistry Communications, 2022, 135: 109087. [22] ARBAB A A, SUN K C, SAHITO I A, et al. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12957-12969. [23] XU J, LI M, WU L, et al. A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells[J]. Journal of Power Sources, 2014, 257: 230-236. [24] SAHITO I A, SUN K C, ARBAB A A, et al. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell[J]. Journal of Power Sources, 2016, 319: 90-98. [25] ARBAB A A, SUN K C, SAHITO I A, et al. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells[J]. Journal of Materials Chemistry A, 2016, 4(4): 1495-1505. [26] LIU J, LI Y, YONG S, et al. Flexible printed monolithic-structured solid-state dye sensitized solar cells on woven glass fibre textile for wearable energy harvesting applications[J]. Scientific Reports, 2019, 9(1): 1362. [27] ARBAB A A, MEMON A A, SUN K C, et al. Fabrication of conductive and printable nano carbon ink for wearable electronic and heating fabrics[J]. Journal of Colloid and Interface Science, 2019, 539: 95-106. [28] LIU J, LI Y, ARUMUGAM S, et al. Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications[J]. Materials Today: Proceedings, 2018, 5(5): 13753-13758. [29] WENG W, CHEN P, HE S, et al. Smart electronic textiles[J]. Angewandte Chemie International Edition, 2016, 55(21): 6140-6169. [30] KIM H S, IM S H, PARK N G. Organolead halide perovskite: New horizons in solar cell research[J]. The Journal of Physical Chemistry C, 2014, 118(11): 5615-5625. [31] LAM J Y, CHEN J Y, TSAI P C, et al. A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications[J]. RSC Advances, 2017, 7(86): 54361-54368. [32] ZHANG H, CHENG J, LIN F, et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility[J]. ACS Nano, 2016, 10(1): 1503-1511. [33] ZARDETTO V, WILLIAMS B L, PERROTTA A, et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges[J]. Sustainable Energy & Fuels, 2017, 1(1): 30-55. [34] 韩井闯, 宋立新, 熊 杰. 柔性钙钛矿太阳能电池的力学稳定性研究进展[J]. 现代纺织技术, 2023, 31(5): 249-258. HAN J C, SONG LX, XIONG J. Research progress on the mechanical stability of flexible perovskite solar cells[J]. Advanced Textile Technology, 2023, 31(5): 249-258. [35] SMITH I C, HOKE E T, SOLIS‐IBARRA D, et al. A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235. [36] 邵梦婷,林萍,崔灿.锡酸钡/钙钛矿的界面修饰对钙钛矿太阳能电池性能的影响[J].浙江理工大学学报(自然科学), 2023,49(1):50-58. Shao M T, Lin P, CUI C. Influence of BaSnO3/perovskite interface modification on the performance of perovskite solar cells[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2023, 49(1): 50-58. [37] 韩亮,崔灿,(NH4)2S修饰SnO2/钙钛矿界面对钙钛矿太阳能电池性能的影响[J].浙江理工大学学报(自然科学),2023,49(6):725-733. HAN L, CUI C, Effects of (NH4)2S modified SnO2/perovskite interface on the performance of perovskite solar cells[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2023, 49(6): 725-733. [38] HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Recent progress in flexible–wearable solar cells for self-powered electronic devices[J]. Energy & Environmental Science, 2020, 13(3): 685-743. [39] DI GIACOMO F, FAKHARUDDIN A, JOSE R, et al. Progress, challenges and perspectives in flexible perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(10): 3007-3035. [40] ZHAI J, YIN X, SONG L, et al. Preparation of fabric-like transparent electrode for flexible perovskite solar cell[J]. Thin Solid Films, 2021, 729: 138698. [41] JUNG J W, BAE J H, KO J H, et al. Fully solution-processed indium tin oxide-free textile-based flexible solar cells made of an organic–inorganic perovskite absorber: Toward a wearable power source[J]. Journal of Power Sources, 2018, 402: 327-332. [42] DU Y, CAI H, BAO X, et al. Flexible perovskite solar cells onto plastic substrate exceeding 13% efficiency owing to the optimization of CH 3 NH 3 PbI3–xClx Film via H2O Additive[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1083-1090. [43] KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921. [44] HWANG K, JUNG Y S, HEO Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J]. Advanced Materials, 2015, 27(7): 1241-1247. [45] QIU L, HE S, YANG J, et al. An all-solid-state fiber-type solar cell achieving 9.49% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10105-10109. [46] FAGIOLARI L, BELLA F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(12): 3437-3472. [47] XUE R, ZHANG J, LI Y, et al. Organic solar cell materials toward commercialization[J]. Small, 2018, 14(41): 1801793. [48] TONG Y, XIAO Z, DU X, et al. Progress of the key materials for organic solar cells[J]. Science China Chemistry, 2020, 63: 758-765. [49] BORAZAN İ, BEDELOGLU A C, DEMIR A. A photovoltaic textile design with a stainless steel mesh fabric[J]. Journal of Industrial Textiles, 2022, 51(10): 1527-1538. [50] FUKUDA K, YU K, SOMEYA T. The future of flexible organic solar cells[J]. Advanced Energy Materials, 2020, 10(25): 2000765. [51] KIM S, HOANG V Q, BARK C W. Silicon-based technologies for flexible photovoltaic (PV) devices: From basic mechanism to manufacturing technologies[J]. Nanomaterials, 2021, 11(11): 2944. [52] LEE S, LEE Y, PARK J, et al. Stitchable organic photovoltaic cells with textile electrodes[J]. Nano Energy, 2014, 9: 88-93. [53] JEONG E G, JEON Y, CHO S H, et al. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing[J]. Energy & Environmental Science, 2019, 12(6): 1878-1889. [54] BEDELOGLU A, DEMIR A, BOZKURT Y, et al. A flexible textile structure based on polymeric photovoltaics using transparent cathode[J]. Synthetic Metals, 2009, 159(19-20): 2043-2048. [55] BEDELOGLU A C, KOEPPE R, DEMIR A, et al. Development of energy generating photovoltaic textile structures for smart applications[J]. Fibers and Polymers, 2010, 11(3): 378-383. [56] STEIM R, CHABRECEK P, SONDEREGGER U, et al. Laminated fabric as top electrode for organic photovoltaics[J]. Applied Physics Letters, 2015, 106(19): 193301. [57] ARUMUGAM S, LI Y, GLANC-GOSTKIEWICZ M, et al. Solution processed organic solar cells on textiles[J]. IEEE Journal of Photovoltaics, 2018, 8(6): 1710-1715. [58] WU C, KIM T W, GUO T, et al. Wearable ultra-lightweight solar textiles based on transparent electronic fabrics[J]. Nano Energy, 2017, 32: 367-373. [59] KYLBERG W, DE CASTRO F A, CHABRECEK P, et al. Woven electrodes for flexible organic photovoltaic cells[J]. Advanced Materials, 2011, 23(8): 1015-1019. [60] LI Y, ARUMUGAM S, KRISHNAN C, et al. Encapsulated textile organic solar cells fabricated by spray coating[J]. ChemistrySelect, 2019, 4(1): 407-412. [61] KREBS F C, BIANCARDO M, WINTHER-JENSEN B, et al. Strategies for incorporation of polymer photovoltaics into garments and textiles[J]. Solar Energy Materials and Solar Cells, 2006, 90(7-8): 1058-1067. [62] ARUMUGAM S, LI Y, SENTHILARASU S, et al. Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications[J]. Journal of Materials Chemistry A, 2016, 4(15): 5561-5568. [63] ZHEN H, LI K, CHEN C, et al. Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes[J]. Journal of Materials Chemistry A, 2017, 5(2): 782-788. [64] CASTRO F A, CHABRECEK P, HANY R, et al. Transparent, flexible and low-resistive precision fabric electrode for organic solar cells[J]. Physica status solidi (RRL) - Rapid Research Letters, 2009: 278-280. |
[1] | LI Xin, SHAO Lingda, MING Lin, HE Rong, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Light transmission characteristics of interwoven decorative fabrics made of silk with hidden weft of different colors [J]. Advanced Textile Technology, 2024, 32(5): 51-57. |
[2] | ZHOU Jinli, WANG Zheng, ZHOU Zhiting, LI Yunfei, XIONG Fan, LI Hongping. Research on the urine leakage frequency monitoring system based on intelligent flexible fabric sensors [J]. Advanced Textile Technology, 2024, 32(3): 91-101. |
[3] | ZHANG Rui, ZHENG Yingyinga, DONG Zhengmeia, ZHANG Ting, SHEN Liming, WANG Jian, ZOU Zhuanyong. Application and research progress of bionic design in smart textiles [J]. Advanced Textile Technology, 2023, 31(6): 226-240. |
[4] | HU Manyu, JIN Xiaoke, TIAN Wei, HUANG Kunzhen, SHAO Lingda, ZHU Chengyan, . Hot-pressing process and structure of laminated composite fabrics with EVA hot-melt adhesive films [J]. Advanced Textile Technology, 2023, 31(4): 173-182. |
[5] | SHI Junminga, b, MENG Fenye , HU Jiyonga, b. Review on fabric dry electrode for long time continuous and stable EMG monitoring on human skin [J]. Advanced Textile Technology, 2023, 31(3): 263-273. |
[6] | YIN Yunlei, GUO Cheng, YANG Hongying, LI Hong, WANG Zheng. Research progress of electronic fabrics in the intelligent wearable field [J]. Advanced Textile Technology, 2023, 31(1): 1-12. |
[7] | FENG Yuan, ZHOU Jinli, YANG Hongying, WANG Zheng, XIONG Fan, DU Lixin. Application progress of embroidery technology in smart textiles [J]. Advanced Textile Technology, 2023, 31(1): 82-91. |
[8] | MENG Fenye, LI Yuling, ZHANG Limin, WANG Qinhua, WU Yan. Preparation and blood flow behavior evaluation of CVCWvascular grafts [J]. Advanced Textile Technology, 2022, 30(5): 157-166. |
[9] | WEN Run, WANG Guifang, WU Siyang, SHEN Hua. Design of Song brocade products based on the raw fabric piece dyeing process [J]. Advanced Textile Technology, 2022, 30(2): 141-147. |
[10] | ZHANG Hongkang, ZHANG Yunjuan, ZHOU Zhaoyi. A quantitative analysis of cotton/polyester/spandex composite fabricthrough hydrochloric acid-sulfuric acid process [J]. Advanced Textile Technology, 2022, 30(2): 63-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||