"[1] AHMED U, TARIQ A, NAWAB Y, et al. Comparison of mechanical behavior of biaxial, unidirectional and standard woven fabric reinforced composites[J]. Fibers and Polymers, 2020, 21(6): 1308-1315.
[2] YU L C, SHEN W S, LI D B, et al. Preparation of multiaxial glass fiber/epoxy prepreg and its mechanical properties in composites[J]. Polymer Composites, 2024,11: 29235.
[3] WU N, XIE X M, YANG J, et al. Effect of normal load on the frictional and wear behaviour of carbon fiber in tow-on-tool contact during three-dimensional weaving process[J]. Journal of Industrial Textiles, 2022, 51(S2): 2753-2773.
[4] 赵新星, 邓紫怡, 孙泽玉, 等. 大丝束碳纤维的上浆工艺及其性能研究[J]. 合成纤维工业, 2023, 46(4): 7-13.
ZHAO X X, DENG Z Y, SUN Z Y, et al. Sizing process and properties of large-tow carbon fiber[J]. China Synthetic Fiber Industry, 2023, 46(4): 7-13.
[5] 杨燕宁, 荆云娟, 张亮儒, 等. 1K碳纤维织物织造关键技术及质量控制[J]. 合成纤维, 2024, 53(12): 5-9.
YANG Y N, JING Y J, ZHANG L R, et al. Key technologies and quality control of 1K carbon fiber fabric weaving[J]. Synthenic Fiber in China, 2024, 53(12): 5-9.
[6] YAO L, RUAN X Y, HONG S T, et al. Effective treatments for enhancing carbon fiber/epoxy interfacial properties and carbon yarn weavability[J]. Textile Research Journal, 2021, 91(21/22): 2476-2486.
[7] 陈利, 张雅璐, 付成龙, 等. 二次上浆处理对国产碳纤维可织性的影响[J]. 天津工业大学学报, 2016, 35(2): 24-28.
CHEN L, ZHANG Y L, FU C L, et al. Effect of secondary sizing on weavability of domestic carbon fiber[J]. Journal of Tiangong University, 2016, 35(2): 24-28.
[8] 焦亚男, 祁小芬, 吴宁, 等. 上浆量对碳纤维的立体织造损伤及其复合材料拉伸性能的影响[J]. 复合材料学报, 2015, 32(5): 1496-1502.
JIAO Y N, QI X F, WU N, et al. Effects of sizing amount on carbon fiber three-dimensional weaving damage and tensile properties of its composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1496-1502.
[9] 李帅, 吴宁, 解锡明, 等. 上浆剂含固量对氮化硅纤维织造适应性的影响[J]. 纺织科学与工程学报, 2020, 37(2): 5-10.
LI S, WU N, XIE X M, et al. Effects of sizing agent solid content on weaving adaptability of silicon nitride fibers[J]. Journal of Textile Science and Engineering, 2020, 37(2): 5-10.
[10] HE R, XU Q, SHI L, et al. Unique silk-carbon fiber core-spun yarns for developing an advanced hybrid fiber composite with greatly enhanced impact properties[J]. Composites Part B: Engineering, 2022, 239: 109971.
[11] 金乾博. 深冷处理对芳纶三聚体纤维及其织物耐磨性能的影响[D]. 上海: 东华大学, 2022: 31-32.
JIN Q B. Effect of cryogenic treatment on wear resistance of aramid trimer fiber and its fabric[D]. Shanghai: Donghua University, 2022: 31-32.
[12] 陈海民, 陈炳燕, 王卓群, 等. 浅析纱线条干不匀与质量不匀相互关系[J]. 纺织标准与质量, 2023(4): 9-11.
CHEN H M, CHEN B Y, WANG Z Q, et al. Analyze the relationship between yarn dryness unevenness and quality unevenness[J]. Textile Standards and Quality, 2023(4): 9-11.
[13] 李杜, 陈清清, 张玲丽, 等. 聚酰胺纤维芳纶1414包覆纱的拉伸性能探讨[J]. 棉纺织技术, 2021, 49(9): 60-63.
LI D, CHEN Q Q, ZHANG L L, et al. Discussion on tensile property of polyamide fiber aramid 1414 covered yarn[J]. Cotton Textile Technology, 2021, 49(9): 60-63.
[14] 赵敏, 杨昆, 刘松. 碳纤维编织性能的研究[J]. 针织工业, 2012(1): 11-13.
ZHAO M, YANG K, LIU S. Knitting property of carbon fiber yarn [J]. Knitting Industries, 2012(1): 11-13.
[15] HU Q L, MEMON H, QIU Y P, et al. A comprehensive study on the mechanical properties of different 3D woven carbon fiber-epoxy composites[J]. Materials, 2020, 13(12): 2765.
[16] WU C M, CHENG Y C, LAI W Y, et al. Friction and wear performance of staple carbon fabric-reinforced composites: Effects of surface topography[J]. Polymers, 2020, 12(1): 141.
[17] 潘月秀, 解锡明, 吴宁, 等. 碳纤维束间的摩擦磨损特性[J]. 复合材料学报, 2019, 36(8): 1838-1846.
PAN Y X, XIE X M, WU N, et al. Frictional and worn behavior of inter-carbon fiber tows[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1838-1846." |