Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (3): 81-88.DOI: 10.19398/j.att.202106074
• MaterialsEngineering • Previous Articles Next Articles
WEI Yue, WANG Sheng, JI Lülü
Received:
2021-06-30
Revised:
2021-08-30
Online:
2022-05-10
Published:
2022-05-26
韦悦, 王晟, 纪律律
作者简介:
韦悦(1997-),女,湖北枣阳人,硕士研究生,主要从事电催化材料方面的研究。
基金资助:
CLC Number:
WEI Yue, WANG Sheng, JI Lülü. Synthesis of nickel sulfide-based carbon nanofibers for electrocatalytic hydrogen evolution reaction[J]. Advanced Textile Technology, 2022, 30(3): 81-88.
韦悦, 王晟, 纪律律. 硫化镍复合碳纳米纤维的制备及其电催化析氢性能[J]. 现代纺织技术, 2022, 30(3): 81-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202106074
[1] WANG T T, Guo X S, ZHANG J Y, et al. Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(9): 4971-4976. [2] LIU X, ZHAO Y X, Yang X F, et al. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance[J]. Applied Catalysis B: Environmental, 2020, 275(15): 119144-11953. [3] 尚哓,董斌,刘晨光.钨掺杂型硫化镍的可控制备及电催化碱性析氢性能研究[C]//中国化学会第十六届胶体与界面化学会议论文集.青岛,2017:389-399. SHANG Xiao, DONG Bin, LIU Chenguang, et al.Controllable synthesis of W-doped nickel sulfide supported by nickel foam as electrocatalysts for alkaline hydrogen evolution reaction[C].//The 16th Colloid and Interface Chemistry Conference, Chinese Chemical Society. Qingdao, 2017, 389-399. [4] KARAKAYA C, SOLATI N, SAVAC1 U, et al. Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction[J]. ACS Catalysis, 2020, 10(24): 15114-15122. [5] LIANG Y, YANG Y, XU K, et al. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction[J]. Journal of Catalysis, 2020, 381: 63-69. [6] WU M H, CHOU W J, HUANG J S, et al. First-principles investigation of the hydrogen evolution reaction on different surfaces of pyrites MnS2, FeS2, CoS2, NiS2[J]. Physical Chemistry Chemical Physics, 2019, 21(38): 21561-21567. [7] LI K, XU J, CHEN C, et al. Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS2[J]. Journal of Colloid and Interface Science, 2020, 582(15): 591-597. [8] 柳兆祥,廖欣,丁丽娟,等.Ni3S2/SiC复合电极的制备及光电催化性能研究[J].浙江理工大学学报(自然科学版),2016,35(5):776-780. LIU Zhaoxiang, LIAO Xin, DING Lijuan, et al. Study on preparation and photoelectric catalysis property of Ni3S2/SiC composite electrode[J].//Journal of Zhejiang Sci-Tech University (Natural Sciences Edition),2016, 35(5): 776-780. [9] 李帅帅,汪星,李敏,等.三维自支撑Ni2P纳米片阵列的制备及析氢性能[J].浙江理工大学学报(自然科学版),2020,43(1):32-38. LI Shuaishuai, WANG Xing, LI Min, et al. Preparation and hydrogen evolution performance of three-dimensional self-supported Ni2P nanosheets[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2020, 43(1): 32-38. [10] 李冰冰,陈璐,许华梅,等.硫化镍基电化学析氢材料的制备与性能研究[J].黑龙江工业学院学报(综合版),2020,20(12):136-140. LI Bingbing, CHEN Lu, XU Huamei, et al. Preparation and properties of nickel sulfide based electrochemical hydrogen evolution materials[J]. Journal of Heilongjiang University of Technology, 2020, 20(12): 136-140. [11] YIN J, JIN J, ZHANG H, et al. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media[J]. Angewandte Chemie International Edition, 2019, 58(51): 18676-18682. [12] HUANG S S, JIN Z Q, NING P, et al. Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting[J]. Chemical Engineering Journal, 2021, 420: 127630-127641. [13] 周洋洋,宋立新,关迎利,等.硫化钴/碳纳米纤维膜对电极的制备与优化[J].现代纺织技术,2018,26(3):1-7. ZHOU Yangyang, SONG Lixin, GUAN Yingli, et al. Preparation and optimization of cobalt sulfide/carbon nanofiber membrane counter electrode[J]. Advanced Textile Technology, 2018, 26(3): 1-7. [14] XIN W L, JIANG W J, LIAN Y J, et al. NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting[J]. Chemical Communications, 2019, 55(26): 3781-3784. [15] YU S H, GOGOI P K, RATH A, et al. In-situ derived highly active NiS2 and MoS2 nanosheets on NiMoO4 microcuboids via controlled surface sulfidation for high-current-density hydrogen evolution reaction[J]. Electrochimica Acta, 2021, 389: 138733-138741. [16] CHENG P F, FENG T, LIU Z W, et al. Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese Journal of Catalysis, 2019, 40(8): 1147-1152. [17] ZHENG Y H, RONG J, XU J C, et al. Accessible active sites activated by cobalt-doping into MoS2/NiS2 nanosheet array electrocatalyst for enhanced hydrogen evolution reaction[J]. Applied Surface Science, 2021, 563(10): 150385-150392. [18] CHACKO L, RASTOGI P K, NARAYANAN T N, et al. Enhanced optical, magnetic and hydrogen evolution reaction properties of Mo1-xNixS2 nanoflakes[J]. RSC Advances, 2019, 9: 13465-13475. [19] ZAHNG S, ZHOU Q W, SHEN Z H, et al. Sulfophobic and vacancy design enables self-cleaning electrodes for efficient desulfurization and concurrent hydrogen evolution with low energy consumption[J]. Advanced Functional Materials, 2021, 31(31): 2101922-2101932. [20] LI C Y, LIU M D, DING H Y, et al. A lightly Fe-doped(NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(34): 17527-17536. [21] SARWAR S, NAUTIYAL A, COOK J, et al. Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction[J]. Science China Materials, 2020, 63(1): 62-74. [22] GAO Y, WANG K, LIN Z X, et al. Hydrothermal synthesis of polyhedral nickel sulfide by dual sulfur source for highly-efficient hydrogen evolution catalysis[J]. Nanomaterials, 2020, 10(11): 2115-21122. [23] ZHANG J L, JIA W, DANG S Q, et al. Sub-5 nm octahedral platinum-copper nanostructures anchored on nitrogen-doped porous carbon nanofibers for remarkable electrocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 560: 161-168. [24] HU Q, WANG Z Y, HUANG X W, et al. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis[J]. Energy & Environmental Science, 2020, 13(12): 5097-5103. [25] ZHAO W X, CI S Q, HU X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale, 2019, 11(11): 4688-4695. [26] CAO K Z, ZHENG R T, WANG S D, et al. Boosting coulombic efficiency of conversion-reaction anodes for potassium-ion batteries via confinement effect[J]. Advanced Functional Materials, 2020, 30(52): 2007712-2007721. [27] JIANG N, TANG Q, SHENG M L, et al. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles[J]. Catalysis Science & Technology, 2016, 6(4): 1077-1084. [28] HUSSAIN S, ULLAH N, ZHANG Y Y, et al. Carbon encapsulated mixed-metal sulfide as proficient electrocatalyst for hydrogen evolution reaction[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 14762-14771. [29] GONG Y Q, LIN Y, YANG Z, et al. Crossed NiCo2S4 nanowires supported on nickel foam as a bifunctional catalyst for efficient overall water splitting[J]. Chemistryselect, 2019, 4(4): 1180-1187. [30] GAO C Y, PENG Z K, WU X Y. Controllable synthesis of hollow NiSe2 spheres as an active electrocatalyst for hydrogen evolution reaction[J]. Functional Materials Letters, 2020, 13(7): 1-4. [31] KONG T, SUI Y W, QI J Q, et al. In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1951-1961. [32] DALAI N, MOHANTY B, MITRA A, et al. Highly active ternary nickel-iron oxide as bifunctional catalyst for electrochemical water splitting[J]. Chemistryselect, 2019, 4(27): 7791-7796. [33] UMESHBABU E, CHARAN P, JUSTIN P, et al. Hierarchically organized NiCo2O4 microflowers anchored on multiwalled carbon nanotubes: efficient bifunctional electrocatalysts for oxygen and hydrogen evolution reactions[J]. Chempluschem, 2020, 85(1): 183-194. [34] ZHAO G Q, WANG X Y, WANG S L, et al. Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting[J]. Chemistry an Asian Journal, 2019,14(2): 301-306. [35] ZHAO L P, YANG A L, WANG A Q. ZIF-67 derived Co, Fe, Ni co-doped porous carbon as an efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of Porous Materials, 2020, 27: 1685-1690. [36] KHIARAK B N, HASANZADEH M, SIMCHI A, et al. Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks[J]. Inorganic Chemistry Communications, 2021, 127: 108525. [37] KHIARAK B N, ZAHRAEI A A, NAZARZADE K, et al. Shape-controlled synthesis of thorn-like 1D phosphorized Co supported by Ni foam electrocatalysts for overall water splitting[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(13): 18363-18370. |
[1] | ZHOU Jiabao, LIU Tao, QIU Qiaohua, ZHU Lingqi, WANG Yanmin, DIN Xinbo. Preparation and antibacterial properties of silk fibroin-polyaniline composite nanofiber membrane [J]. Advanced Textile Technology, 2024, 32(5): 9-17. |
[2] | LI Jinchao, MEI Shuo, DU Yujia, MA Biao, LI Hong. Preparation and performance of polyurethane nanofiber membrane for air filtration#br# [J]. Advanced Textile Technology, 2024, 32(5): 18-22. |
[3] | QI Qinghuan, SHI Xiaohan, ZHANG Qing, YUAN Baokui, ZHOU Yuman. Construction and thermal conductivity of PVDF/Ag fiber membranes with high thermal conductivity [J]. Advanced Textile Technology, 2024, 32(5): 23-31. |
[4] | XING Dongfeng, LI Yunhuan, GAO Yu, WANG Fuxing, FU Qiang, JIN Dalai. Preparation and hydrophilic properties of star-shaped PLLA-PEG block copolymer fiber membranes [J]. Advanced Textile Technology, 2024, 32(3): 45-52. |
[5] | WANG Qi, CHEN Mingxing, ZHANG Wei WU Yanjie, WANG Xinya. Research progress in electrospun Janus nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 1-10. |
[6] | ZHANG Yanan, XU Bingjie, LI Mengwei, REN Haotian, GAO Yujie, WANG Yijia, WU Jindan, . Preparation and antibacterial properties of loaded aggregation-induced emission photosensitizers nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 31-39. |
[7] | . Preparation of GA cross-linked PVA/SA electrospinning nanofibrous membranes and their moisture-powered generation performance [J]. Advanced Textile Technology, 2024, 32(10): 40-47. |
[8] | ZHU Jianzheng, CUI Jingping, ZHOU Lan, ZHANG Guoqing. Preparation of a dual-loaded polyaniline photothermal membrane based on electrospinning and its application in wastewater treatment [J]. Advanced Textile Technology, 2024, 32(10): 48-55. |
[9] | YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, HU Yawen. Research on the application of electrospinning nanofibers in the field of drug delivery [J]. Advanced Textile Technology, 2024, 32(10): 56-67. |
[10] | LIU Shu, DING Xinbo, LIN Wanli, QIU Qiaohua, LI Ya, . Preparation and water-induced power generation performance of flexible macroporous SiO2 nanofibers [J]. Advanced Textile Technology, 2023, 31(6): 72-79. |
[11] | FANG Xuesonga, XIONG Jieb, SONG Lixinb. Preparation of C@MnO2 composite nanofiber cathode and its application in Zn2+ batteries [J]. Advanced Textile Technology, 2023, 31(5): 41-48. |
[12] | YU Linshuang, JIN Wanhui, ZHOU Ying, YAN Yueyue, LEI Caihong, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/alizarin composite fiber membranes [J]. Advanced Textile Technology, 2023, 31(5): 58-65. |
[13] | LIU Yanbo, HE Xingyu, HAO Ming, HU Xiaodong, YANG Bo. Influence of array disc-type spinneret structure on electric field intensity [J]. Advanced Textile Technology, 2023, 31(5): 142-150. |
[14] | WANG Yina, DING Xinboa, LIU Taoa, b, QIU Qiaohuaa, WANG Yanminga. Preparation and conductive properties of flexible sensors based on silk fibroin/MXene composite nanofiber membranes [J]. Advanced Textile Technology, 2023, 31(4): 63-73. |
[15] | CHENG Wei, ZHANG Jing, XU Chengshu, REN Yan. Preparation of wool keratin and polyvinyl alcohol composite fiber membrane and the exploration as surgical-mask filtration materials [J]. Advanced Textile Technology, 2023, 31(4): 74-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||