现代纺织技术 ›› 2022, Vol. 30 ›› Issue (3): 23-30.DOI: 10.19398/j.att.202106063
刘超1,2, 何斌1, 汪泽幸1, 周蓉1
收稿日期:
2021-06-23
修回日期:
2021-10-20
出版日期:
2022-05-10
网络出版日期:
2022-05-26
作者简介:
刘超(1985-),女,湖南衡阳人,博士研究生,主要从事非织造过滤材料制备及性能方面的研究。
基金资助:
LIU Chao1,2, HE Bin1, WANG Zexing1, ZHOU Rong1
Received:
2021-06-23
Revised:
2021-10-20
Published:
2022-05-10
Online:
2022-05-26
摘要: 大多数合成纤维属于惰性高分子材料,由于活性基团较少,抗菌改性相对较困难,因此对抗菌剂的选择和改性方法提出了更高要求。卤胺化合物具有广谱长效抗菌、可循环再生、稳定性好等优点被广泛用于纤维材料的抗菌改性。本文从卤胺化合物分类和合成纤维抗菌改性方法两个方面出发,总结了表面接枝、表面涂覆、共混改性和反应挤出等方法对合成纤维进行卤胺化合物抗菌改性的研究进展,并展望了未来合成纤维抗菌改性的发展方向。
中图分类号:
刘超, 何斌, 汪泽幸, 周蓉. 基于卤胺化合物抗菌改性合成纤维材料的研究进展[J]. 现代纺织技术, 2022, 30(3): 23-30.
LIU Chao, HE Bin, WANG Zexing, ZHOU Rong. Research progress of antibacterial modified synthetic fiber materials based on N-halamine compounds[J]. Advanced Textile Technology, 2022, 30(3): 23-30.
[1] KOVACIC P, LOWERY M K. Chemistry of N-halamines. XII. Amination of alkyl halides with trichloramine-aluminum chloride[J]. The Journal of Organic Chemistry, 1969, 34(4): 911-917. [2] KOVACIC P, LOWERY M K, FIELD K W. Chemistry of N-bromamines and N-chloramines[J]. Chemical Reviews, 1970, 70(6): 639-665. [3] SUN G, WHEATLEY W B, WORLEY S D. A new cyclic N-halamine biocidal polymer[J]. Industrial & Engineering Chemistry Research, 1994, 33(1): 168-170. [4] HUI F, DEBIEMME-CHOUVY C. Antimicrobial N-halamine polymers and coatings: A review of their synthesis, characterization, and applications[J]. Biomacromolecules, 2013, 14(3): 585-601. [5] LI L, JUNG J, MA W, et al. Enhanced antimicrobial and antifungal property of two-dimensional fibrous material assembled by N-halamine polymeric electrolytes[J]. Materials Science and Engineering C, 2020, 115: 111122. [6] SUN X, CAO Z, PORTEOUS N, et al. Amine, melamine, and amide N-halamines as antimicrobial additives for polymers[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11206-11213. [7] REN X H, KOU L, KOCER H B, et al. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 711-716. [8] WORLRY S D, WILLAMS D E, CRAWFROD R A. Halamine water disinfectants[J]. Critical Reviews in Enviromental Control, 1988, 18(2): 133-175. [9] REN X H, KOCER H B, WORLEY S D, et al. Rechargeable biocidal cellulose: Synthesis and application of 3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione[J]. Carbohydrate Polymers, 2009, 75(4): 683-687. [10] BARNELA S B, WORLEY S D, WILLAMS D E. Syntheses and antibacterial activity of new N-halamine compounds[J]. Journal of Pharmaceutical Sciences, 1987, 76(3): 245-247. [11] AHMED A E S I, HAY J N, BUSHELL M E, et al. Optimizing halogenation conditions of N-halamine polymers and investigating mode of bactericidal action[J]. Journal of Applied Polymer Science, 2009, 113(4): 2404-2412. [12] CHOI K, NAM M J, KIM J Y, et al. Synthesis and characterization of biocidal poly(oxyethylene)s having N-halamine side groups[J]. Macromolecular Research, 2011, 19(12): 1227-1232. [13] EKNOIAN M W, WORLEY S D, Harris J M. New biocidal N-halamine-PEG polymers[J]. Journal of Bioactive and Compatible Polymers, 1998, 13(2): 136-145. [14] REN X H, AKDAG A, ZHU C Y, et al. Electrospun polyacrylonitrile nanofibrous biomaterials [J]. Journal of Biomedical Materials Research Part A, 2009, 91A(2): 385-390. [15] LEE J, BROUGHTON R M, AKDAG A, et al. Preparation and application of ans-triazine-based novel N-halamine biocide for antimicrobial fibers[J]. Fibers and Polymers, 2007, 8(2): 148-154. [16] LIANG J, CHEN Y J, REN X H, et al. Fabric treated with antimicrobial N-halamine epoxides[J]. Industrial & Engineering Chemistry Research, 2007, 46(20): 6425-6429. [17] LI L, MA K K, LIU Y, et al. Biocompatible antimicrobial cotton modified with tricarbimide-based N-halamine [J]. Polymers for Advanced Technologies, 2014, 25(9): 963-968. [18] MA K K, LIU Y, XIE Z, et al. Synthesis of novel N-halamine epoxide based on cyanuric acid and its application for antimicrobial finishing [J]. Industrial & Engineering Chemistry Research, 2013, 52(22): 7413-7418. [19] PASTORIZA C, ANTELO J M, CRUGEIRAS J. Reactions of chlorination withtert-butyl hypochlorite (TBuOCl)[J]. Journal of Physical Organic Chemistry, 2014, 27(12): 952-959. [20] PASTORIZA C, ANTELO J M, CRUGEIRAS J. Use of N-chloro-N-methyl-p-toluenesulfonamide in N-chlorination reactions[J]. Journal of Physical Organic Chemistry, 2013, 26(7): 551-559. [21] BADROSSAMAY M R, SUN G. Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities[J]. Reactive and Functional Polymers, 2008, 68(12): 1636-1645. [22] LUO J, SUN Y. Acyclic N-halamine-based fibrous materials: Preparation, characterization, and biocidal functions [J]. Journal of Polymer Science Part A Polymer Chemistry, 2006, 44(11): 3588-3600. [23] YLDIZ O, CERKEZ I, KOCER H B, et al. N-(hydroxymethyl)acrylamide as a multifunctional finish to cotton and a tether for grafting methacrylamide for biocidal coatings[J]. Journal of Applied Polymer Science, 2013, 128(6): 4405-4410. [24] DUTTA A K, EGUSA M, KAMINAKA H, et al. Facile preparation of surface N-halamine chitin nanofiber to endow antibacterial and antifungal activities[J]. Carbohydrate Polymers, 2015, 115: 342-347. [25] CAO Z, SUN Y. N-halamine-based chitosan: Preparation, characterization, and antimicrobial function[J]. Journal of Biomedical Materials Research Part A, 2008, 85(1): 99-107. [26] LI R, HU P, REN X H, et al. Antimicrobial N-halamine modified chitosan films[J]. Carbohydrate Polymers, 2013, 92(1): 534-539. [27] CHENG X L, MA K K, LI R, et al. Antimicrobial coating of modified chitosan onto cotton fabrics[J]. Applied Surface Science, 2014, 309: 138-143. [28] HUGANG C, CHEN Y B, SUN G, et al. Disinfectant performance of a chlorine regenerable antibacterial microfiber fabric as a reusable wiper[J]. Materials, 2019, 12(1): 127. [29] TAMIZIFAR M, SUN G. Control of surface radical graft polymerization on polyester fibers by using Hansen solubility parameters as a measurement of the affinity of chemicals to materials[J]. RSC Advances, 2017, 7(22): 13299-13303. [30] TAMIZIFAR M, SUN G. Surface modification of poly(ethylene terephthalate)fibers via controlled radical graft polymerization[J]. Journal of Applied Polymer Science, 2018, 135(11): 45990. [31] TAMIZIFAR M, SUN G. Controlled surface function-alization of poly(ethylene terephthalate)fibers with varied vinyl monomers via radical graft copolymerization[J]. Materials Today Communications, 2018, 17: 124-132. [32] XI G H, XIUY L, WANG L, et al. Antimicrobial N-halamine coatings synthesized via vapor-phase assisted polymerization[J]. Journal of Applied Polymer Science, 2015, 132(15): 41824. [33] ANDOU Y, JEONG J M, NISHIDA H, et al. Simple procedure for polystyrene-based nanocomposite preparation by vapor-phase-assisted surface polymerization[J]. Macromolecules, 2009, 42(20): 7930-7935. [34] ANDOU Y, JEONG J M, HIKI S, et al. Design of nanocomposites by vapor-phase assisted surface polymeri-zation[J]. Macromolecules, 2009, 42(3): 768-772. [35] 王留阳,王芳颖.卤胺在织物抗菌改性中的应用进展[J].上海纺织科技,2011,39(11):8-11. WANG Liuyang, WANG Fangying. Progress of halamine applications in the preparation of antimicrobial fabrics[J]. Shanghai Textile Science & Technology, 2011, 39(11): 8-11. [36] LIU S, ZHAO N, RUDENJA S. Surface interpenetrating networks of poly(ethylene terephthalate)and polyamides for effective biocidal properties[J]. Macromolecular Chemistry and Physics, 2010, 211(3): 286-296. [37] ZHAO N, ZHANEL G G, LIU S. Regenerability of antibacterial activity of interpenetrating polymeric N-halamine and poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2011, 120(1): 611-622. [38] ZHAO N, LIU S. Thermoplastic semi-IPN of polypropylene (PP)and polymeric N-halamine for efficient and durable antibacterial activity[J]. European Polymer Journal, 2011, 47(8): 1654-1663. [39] LIU Y, QIAO M, LV C, et al. N-halamine polyelectrolytes used for preparation of antibacterial polypropylene nonwoven fabrics and study on their basal cytotoxicity and mutagenicity[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69(15): 971-978. [40] LIU Y, LI J, CHENG X, et al. Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate[J]. Journal of Materials Chemistry B, 2015, 3(7): 1446-1454. [41] DENIS-ROHR A, BASTARRACHEA L J, GODDARD J M. Antimicrobial efficacy of N-halamine coatings prepared via dip and spray layer-by-layer deposition[J]. Food and Bioproducts Processing, 2015, 96: 12-19. [42] CERKEZ I, WORLEY S D, BROUGHTON R M, et al. Antimicrobial coatings for polyester and polyester/cotton blends[J]. Progress in Organic Coatings, 2013, 76(7/8): 1082-1087. [43] CERKEZ I, KOCER H B, WOLEY S D, et al. Antimicrobial functionalization of poly(ethylene terephthalate)fabrics with waterborne N-halamine epoxides[J]. Journal of Applied Polymer Science, 2016, 133(9): 43088. [44] CERKEZ I, WOLEY S D, BROUGHTON R M, et al. Antimicrobial surface coatings for polypropylene nonwoven fabrics[J]. Reactive and Functional Polymers, 2013, 73(11): 1412-1419. [45] 张淑敏,任学宏,李清芳.卤胺抗菌共聚物改性丙纶无纺布的研究[J].化工新型材料,2018,46(4): 201-204. ZHANG Shumin, REN Xuehong, LI Qingfang. Study on antibacterial finishing of PP nonwoven fabric by N-halamine copolymer[J]. New Chemical Materials, 2018, 46(4): 201-204. [46] DEMIR B, CERKEZ I, WORLEY S D, et al. N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1752-1757. [47] CHEN Y, HE Q K, REN G Y, et al. Preparation of biocidal 4-ethyl-4-(hydroxymethyl)oxazolidin-2-one-based N-halamine polysiloxane for impregnation of polypropylene in supercritical CO2[J]. Journal of Applied Polymer Science, 2018, 135(33): 46624. [48] 李蓉,刘喆,任学宏.环状卤胺化合物改性壳聚糖/PVA纳米纤维的制备与表征[J].材料导报,2013,27(14):45-48. LI Rong, LIU Zhe, REN Xuehong. Preparation and characterization of cyclic N-halamine modified chitosan/PVA nanofibers[J]. Materials Reports, 2013, 27(14): 45-48. [49] 黄程博,任学宏.静电纺抗菌聚丙烯腈纳米纤维膜制备及其性能[J].纺织学报,2019,40(5):7-11. HUANG Chengbo, REN Xuehong. Synthesis and properties of antibacterial polyacrylonitrile nanofiber membrane[J]. Journal of Textile Research, 2019, 40(5): 7-11. [50] HUANG C B, LIU Y, LI Z G, et al. N-halamine antibacterial nanofibrous mats based on polyacrylonitrile and N-halamine for protective face masks[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-8. [51] LUO H, YIN X Q, TAN P F, et al. Engineering an antibacterial nanofibrous membrane containing N-halamine for recyclable wound dressing application[J]. Materials Today Communications, 2020, 23: 100898. [52] BAI R, ZHANG Q, LI L L, et al. N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31530-31540. [53] TIAN CC, WU F, JIAO W L, et al. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications[J]. Composites Communications, 2021, 24: 100668. [54] BADROSSAMAY M R, SUN G. A study of radical graft copolymerization on polypropylene during extrusion using two peroxide initiators[J]. Polymer International, 2010, 59(2): 155-161. [55] BADROSSAMAY M R, SUN G. A study on melt grafting of N-halamine moieties onto polyethylene and their antibacterial activities[J]. Macromolecules, 2009, 42(6): 1948-1954. [56] BADROSSAMAY M R, SUN G. Graft polymerization of N-tert-butylacrylamide onto polypropylene during melt extrusion and biocidal properties of its products[J]. Polymer Engineering & Science, 2009, 49(2): 359-368. [57] BADROSSAMAY M R, SUN G. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2009, 89B(1): 93-101. [58] BADROSSAMAY M R, SUN G. Preparation of rechargeable biocidal polypropylene by reactive extrusion with diallylamino triazine[J]. European Polymer Journal, 2008, 44(3): 733-742. [59] WANG D, SUN G, CHIOU B S. A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers[J]. Macromolecular Materials and Engineering, 2007, 292(4): 407-414. [60] WANG D, LIU N, XU W L, et al. Layer-by-layer structured nanofiber membranes with photoinduced self-cleaning functions[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6825-6832. [61] WANG D, SUN G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends[J]. European Polymer Journal, 2007, 43(8): 3587-3596. [62] WANG D, XU W L, SUN G, et al. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 2838-2844. |
[1] | 诸葛依娜, 刘福娟. 仿生微纳结构抗菌材料综述[J]. 现代纺织技术, 2022, 30(5): 222-234. |
[2] | 于颖. 马钱苷结构修饰产物对真丝绸的染色性能[J]. 现代纺织技术, 2022, 30(4): 162-169. |
[3] | 贾雪莹, 王騊. TiO2纳米棒复合织物的制备及其光催化和抗菌性能[J]. 现代纺织技术, 2022, 30(3): 136-142. |
[4] | 王霖安, 张军, 傅红平, 余志成. 紫花地丁植物染料对纯棉针织物的染色性能研究[J]. 现代纺织技术, 2022, 30(1): 157-161. |
[5] | 陆叶,邵怡沁,陈慰来. 纳米银抗菌针织物的制备与性能研究[J]. 现代纺织技术, 2021, 0(6): 67-71. |
[6] | 黄益,马军翔,金曦,潘小鹏,郑今欢. 环保型聚氨酯仿皮涂层材料研究进展[J]. 现代纺织技术, 2021, 0(5): 116-128. |
[7] | 程飞阳,祝国成. 石墨烯改性纺织品研究进展[J]. 现代纺织技术, 2021, 0(4): 107-114. |
[8] | 安晓龙,王纪冬,徐玉良,陈学彪. 新型抗菌羊毛/羊绒混纺纱线生产工艺研究[J]. 现代纺织技术, 2021, 0(2): 34-38. |
[9] | 梁晓颖,王利君. 棉织物柿漆染色工艺及性能[J]. 现代纺织技术, 2021, 0(1): 68-75. |
[10] | 吴炳烨. 新型抗菌除臭再生纤维素纤维性能的研究[J]. 现代纺织技术, 2021, 0(1): 36-40. |
[11] | 邢江元,郑振荣,黄胶,朱文双,吕兴倩,智伟. 染整工艺对大麻纤维天然抗菌性能的影响[J]. 现代纺织技术, 2020, 0(5): 64-68. |
[12] | 蒋建清,章水龙,杨新勇,郭权龙. 纳米铜离子抗菌纱线纺纱工艺探析[J]. 现代纺织技术, 2020, 0(1): 27-30. |
[13] | 郑洋,孙利忠,朱海霖,孙辉,王峰,王银燕,王彩华,刘婧,于斌. 介孔载银抗菌PP纺粘非织造材料的制备及其性能研究[J]. 现代纺织技术, 2019, 0(05): 11-14. |
[14] | 吴俭俭,许成韬,谢维斌,聂锦梅,崔成民,张焱. 自还原法制备纳米银抗菌棉织物工艺初探[J]. 现代纺织技术, 2019, 0(04): 76-80. |
[15] | 邓亚敏,阎玉秀,金子敏. 咖啡炭纤维对无缝针织物性能的影响[J]. 现代纺织技术, 2019, 0(04): 48-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||