现代纺织技术 ›› 2022, Vol. 30 ›› Issue (5): 235-245.DOI: 10.19398/j.att.202111058
李美霞, 吕汪洋, 王刚强, 陈文兴
收稿日期:
2021-11-29
出版日期:
2022-09-10
网络出版日期:
2022-09-19
通讯作者:
吕汪洋,E-mail: luwy@zstu.edu.cn
作者简介:
李美霞(1998-),女,湖南邵阳人,硕士研究生,主要从事高性能纤维功能化方面的研究。
基金资助:
LI Meixia, LÜ Wangyang, WANG Gangqiang, CHEN Wenxing
Received:
2021-11-29
Published:
2022-09-10
Online:
2022-09-19
摘要: 超高分子量聚乙烯(UHMWPE)纤维因具有高强高模低密等优异性能而受到广泛关注,但由于纤维表面惰性大、缺乏极性基团,导致其与树脂基体的黏结力低,限制了其在复合材料领域中的应用,因而需通过表面改性来提高其界面性能。本文综述了UHMWPE纤维表面改性的最新进展,介绍了UHMWPE纤维增强复合材料的界面性质及增强机理;概述了等离子体改性、辐照接枝改性、氧化刻蚀以及电晕改性和涂层改性等方法,并分析了这些技术的优势和局限性;最后,提出对UHMWPE纤维未来研究方向的展望。
中图分类号:
李美霞, 吕汪洋, 王刚强, 陈文兴. 超高分子量聚乙烯纤维表面改性研究进展[J]. 现代纺织技术, 2022, 30(5): 235-245.
LI Meixia, LÜ Wangyang, WANG Gangqiang, CHEN Wenxing. Research progress on surface modification of ultra-high molecular weight polyethyene fibers[J]. Advanced Textile Technology, 2022, 30(5): 235-245.
[1] CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021, 140:106146. [2] 孙山峰,代士维,徐绍魁.超高分子量聚乙烯纤维的性能与应用[J].当代化工研究,2019(7):97-98. SUN Shangfeng, DAI Shiwei, XU Shaokui. Properties and application of ultra-high molecular weight polyethylene fiber[J]. Modern Chemical Research, 2019(7): 97-98. [3] 李丽,林娜,赵雷,等.防割类安全与防护用纺织品的研究及应用现状[J].棉纺织技术,2020,48(4):14-17. LI Li, LIN Na, ZHAO Lei, et al. Research and application status of cut-resistant safety and protection textile[J]. China Textile Science, 2020, 48(4): 14-17. [4] 尚金龙,李思海,陈贻明.纤维增强塑料在航空航天领域中的应用[J].塑料工业,2019,47(1):148-151. SHANG Jinlong, LI Sihai, CHEN Yiming. Application of fiber reinforced plastic in aerospace field[J].China Plastics Industry, 2019, 47(1): 148-151. [5] WANG S C, MAJY, FENG X, et al. An effective surface modification of UHMWPE fiber for improving the interfacial adhesion of epoxy resin composites[J]. Polymer Composites, 2021, 41(4): 1614-1623. [6] ZHU D, ZHANG X L,WANG Y X, et al. Interfacial bond property of UHMWPE composites[J]. Polymer Bulletin, 2010, 65(1): 35-44. [7] ZHANGX, WANG Y, LU C, et al. Interfacial adhesion study on UHMWPE fiber-reinforced composites[J]. Polymer Bulletin, 2011, 67(3): 527-524. [8] TURICEK J,RATTS N,KALTCHEV M, et al. Surface treatment of ultra-high molecular weight polyethylene (UHMWPE) by cold atmospheric plasma (CAP)for biocompatibility enhancement[J]. Applied Sciences, 2021, 11(4): 1703. [9] ALENCASTROA F S, GUIMARAESA E F,BASTIAN F L, et al. Mechanism of oxygen and argon low pressure plasma etching on polyethylene (UHMWPE)[J]. Surface & Coatings Technology, 2019, 378: 124990. [10] KUSANO Y, MADSEN B, BERGLUND L, et al. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces[J]. Surface Engineering, 2018, 34(11): 825-831. [11] NEJATBAKHSH S, ANAGRI A, OMRAN V A, et al. Improvement of the bioactivity of UHMWPE by two different atmospheric plasma treatments[J].Plasma Chemistryand Plasma Processing, 2020, 41(1): 245-264. [12] LIU Z X, WANG K Y, LI L T. Interfacial performance and impact resistance of argon plasma treated UHMWPE/STF inter-ply hybrid composites[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 1-10. [13] TABAEI P S E, GHOBEIRA R, COOLS P, et al. Comparative study between in-plasma and post-plasma chemical processesoccurring at the surface of UHMWPE subjected to medium pressure Ar andN2 plasma activation[J]. Polymer, 2020, 193: 122383. [14] FIROUZI D, CHING C Y, RIZVI S N, et al. Development of oxygen-plasma-surface-treated UHMWPE fabric coated with a mixture of SiC/Polyurethane for protection against puncture and needle threats[J]. Fibers, 2019, 7(5): 46-60. [15] DOMINGUEZ-LOPEZ I, DOMÍNGUEZ-DÍAZ M, GARCÍA-GARCÍA A L, et al. Effect of atmospheric plasma treatment on the wettability of UHMWPE[J]. Materials Letters, 2021, 285: 129159. [16] RODRIGUES M M,FONTOURA C P, GARCIA C S C, et al.Investigation of plasma treatment on UHMWPE surfaces: Impact onphysicochemical properties, sterilization andfibroblastic adhesion[J].Materials Science & Engineering C, 2019, 102: 264-275. [17] MOON S I, JANG J. The effect of the oxygen-plasma treatment of UHMWPE fiber on thetransverse properties of UHMWPE-fiber/vinylester composites[J]. Composites Science and Technology, 1999, 59(4): 487-493. [18] MOON S I, JANG J. The mechanical interlocking and wettingat the interface between argon plasma treated UHMWPE fiber and vinylester resin[J].Journal of Materials Science, 1999, 34: 4219-4224. [19] 田孟琪,杨建忠,高宾.低温等离子体改性UHMWPE纤维的表面性能[J].合成纤维,2017,46(5):22-27. TIAN Mengqi, YNAG Jianzhong, GAO Bin. Surface properties of UHMWPE fiber treated by low temperature plasma[J]. Synthetic Fiber in China, 2017, 46(5): 22-27. [20] 姜生.等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J].纺织学报,2007,28(9):57-60. JIANG Sheng. Properties of plasma treated UHMWPE/ LDPE composites[J]. Journal of Textile Research, 2007, 28(9): 57-60. [21] 贾彩霞,王乾,任荣,等.超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J].复合材料学报,2020,37(3):573-580. JIA Caixia, WANG Qian, REN Rong, et al. Influence mechanism of ultra high molecular weight polyethylene(UHMWPE) fiber surface modification on interfacial performance of UHMWPE/epoxy composites[J]. Library Theory and Practice, 2020, 37(3): 573-580. [22] 张晓娇,魏征,张立群.大剂量范围电子束辐照超高分子量聚乙烯纤维结构与性能研究[J].高分子通报,2014(10):86-91. ZHANG Xiaojiao, WEI Zheng, ZHANG Liqun. Study on structure and properties of ultra-high molecular weight polyethylene fibers irradiated by electron beam in large dose range[J]. Polymer Bulletin, 2014(10): 86-91. [23] 梁日辉,都亚,牧艺,等.紫外光辐照对超高分子量聚乙烯纤维结构与性能的影响[J].高分子材料科学与工程,2014,30(8):85-90. LIANG Rihui, DU Ya, MU Yi, et al. Effect of ultra-violet irradiation on structure and properties of ultra-high molecular weight polyethylene fibers[J]. Polymer Materials Science & Engineering, 2014, 30(8): 85-90. [24] MAKSIMKIN A V, SENATOV F S, SERGEY D, et al. Treating UHMWPE surface for enhancing the adhesion properties by cellulose grafting[J]. International Journal of Adhesion and Adhesives, 2020, 98: 102535. [25] GAO QH,WANG ML,CHEN J, et al. Fabrication of new conductive surface-metallizedUHMWPE fabric with improvd thermal resistance[J]. Royal Society of Chemistry Advances, 2020, 10(26): 15139-15147. [26] WANG L, GAOSB, WANG J J, et al.Surface modification of UHMWPE fibers by ozone treatment and UV grafting for adhesionimprovement[J]. The Journalof Adhesion, 2018, 94(1): 30-45. [27] 冯鑫鑫,邱龙,张明星,等.偕胺肟基超高分子量聚乙烯纤维对含氟含铀溶液中铀的吸附性能研究[J].核技术,2020,43(2):70-78. FENG Xinxin, QIU Long, ZHANG Mingxing, et al. Preparation of amidoxime-based ultra-high molecular weight polyethylene fiber for removing uranium from fluorine-containing wastewater[J]. Nuclear Techniques, 2020, 43(2): 70-78. [28] 李超然,奚明旺,赵嘉欣,等.电子束和γ-ray对UHMWPE纤维的辐照效应对比研究[J].华中师范大学学报(自然科学版),2019,53(6):937-942. LI Chaoran, XI Mingwang, ZHAO Jiaxin, et al.Comparison of irradiation effects of electron beam and γ-ray on UHMWPE fiber[J]. Journal of Central China Normal University(Natural Sciences), 2019, 53(6): 937-942. [29] 段为朋,李冰月,冒浴沂,等.GO填充对辐照交联UHMWPE/VE复合材料吸水率及润湿性的影响[J].塑料科技,2019,47(4):26-30. DUAN Weipeng, LI Binyue, MAO Yuyi, et al. Influence of GO filling on water absorption and wettability properties of irradiation cross-linked UHMWPE/VE composites[J]. Plastics Science and Technology, 2019, 47(4): 26-30. [30] 厉相宝,倪晓梅,信苗苗,等.增强改性UHMWPE材料在水润滑条件下的磨损性能研究[J].塑料工业,2019,47(12):23-26,57. LI Xiangbao, NI Xiaomei, XIN Miaomiao, et al. Wear behavior of reinforced modified UHMWPE material under water lubrication[J]. China Plastics Industry, 2019, 47(12): 23-26, 57. [31] 董鹏刚,陈有双,唐忠锋,等.γ射线辐照对超高分子量聚乙烯/改性纳米伊蒙土复合材料的拉伸性能及热稳定性的影响[J].辐射研究与辐射工艺学报,2017,35(4):53-58. DONG Penggang, CHEN Youshuang, TANG Zhongfeng, et al. Thermostability and tensile-property of ultra-high molecular weight polyethylene/modified illite-smectite interstratified clay minerals composites irradiated by γ-rays[J]. Journal of Radiation Research and Radiation Processing, 2017, 35(4): 53-58. [32] LI CY, SHI YM, ZHANG R, et al. Effect of surface modifications on the properties of UHMWPE fibres and their composites[J]. e-Polymers, 2019, 19(1): 40-49. [33] 李瑞培,李微微,孟立,等.超高分子量聚乙烯纤维的液相氧化改性及其环氧树脂基复合材料的力学和摩擦性能[J].材料导报,2016,30(4):41-46. LI Ruipei, LI Weiwei, MENG Li, et al. Liquid-phase oxidation modification of ultra-high molecular weight polyethylene fiber and mechanical/tribological properties of the corresponding fiber-reinforced epoxy resin composites[J]. Materials Reports, 2016, 30(4): 41-46. [34] 罗峻,邓华.超高分子量聚乙烯纤维表面改性方法研究进展[J].中国纤检,2019(8):124-127. LUO Jun, DENG Hua. Research progress on surface modification methods of ultra-high molecular weight polyethylene fiber[J]. China Fiber Inspection, 2019(8): 124-127. [35] 魏冬,薛涛,孟家光,等.铬酸改性超高相对分子质量聚乙烯纤维的研究[J].合成纤维,2016,45(11):20-24. WEI Dong, XUE Tao, MENG Jiaguang, et al.Research on UHMWPE fiber modified by chromic acid[J]. Synthetic Fiber in China, 2016, 45,(11): 20-24. [36] BELGACEMI R, DERRADJI M, TRACHE D, et al. Toward an efficient stress transfer with a fully connectedhybrid network from epoxy, oxidized UHMWPE fibers, andsilane surface modified silicon carbide nanoparticles[J]. Polymer Composites, 2021, 42:462-473. [37] DERRADJI M, MOULOUD A, TRACHE D, et al. On the mechanical and morphologicalproperties of highly performantcomposite laminates based on epoxyresin and oxidized ultrahigh-molecular-weight polyethylene fibers[J]. High Performance Polymers, 2020, 32(9): 992-1000. [38] LI W W, FENG M, LI X J, et al. Ultra-high molecular weight polyethylene fibers/epoxy composites: Effect of fiber treatment on properties[J]. Fibers and Polymer, 2019, 20(2): 421-427. [39] LI M, MA R L, LI W W. Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylenefiber reinforced natural rubbercom-posites[J]. Polymer Testing, 2016, 55(8): 10-16. [40] HAN L, CAI H F, CHEN X, et al. Study of UHMWPE fiber surface modification andthe properties of UHMWPE/epoxy composite[J]. Polymers, 2020, 12(3): 521-534. [41] 李焱,李常胜,黄献聪.电晕处理对UHMWPE纤维的性能影响[J].合成纤维工业,2010,33(3):36-38. LI Yan, LI Changsheng, HUANG Xiancong. Effect of corona treatment on properties of UHMWPE fiber[J]. China Synthetic Fiber Industry, 2010, 33(3): 36-38. [42] FENG M, LI W W, LIU X J, et al. Copper-polydopamine composite coating decorating UHMWPE fibers for enhancing the strength and toughness of rigid polyurethane composites[J]. Polymer Testing, 2020, 93: 106883. [43] KAZEMI M E, LI Z H, SHANMUGAM L, et al. Low-velocity impact behavior of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes[J]. Composites Communications, 2020, 22: 100527. [44] SHANMUGAM L, FENG X M, YANG J L. Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating[J]. Composites Science and Technology, 2019, 174(3): 212-220. [45] LI W W, LIU X J, FENG M, et al. Bamboo-like ultra-high molecular weight polyethylene fibers and their epoxy composites[J]. Composites Science and Technology, 2019, 182: 107716. [46] JIN X, WANG W Y , XIAO C F, et al. Improvement of coating durability, interfacial adhesion andcompressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating[J]. Composites Science and Technology, 2016, 128(3): 169-175. [47] 田永龙,郭腊梅.UHMWPE纤维的PEW-g-MAH涂层改性及性能研究[J].针织工业,2019(3):22-25. TIAN Yonglong, GUO Lamei. Surface modification of UHMWPE fiber using PEW-g-MAH[J]. Knitting Industries, 2019(3): 22-25. [48] 向鑫,张春华,李仁豪,等.纳米ZrO2增强聚氨酯/超高分子量聚乙烯复合纱线的制备和性能研究[J].服饰导刊,2020,9(2):64-68. XIANG Xin, ZHANG Chunhua, LI Renhao, et al. Preparation and performance of nano-ZrO2 reinforced olyurethane/UHMWPE composite yarns[J]. Fashion Guide, 2020, 9(2): 64-68. [49] 赵晗,尚晴,杨萌,等.邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维[J].高分子学报,2020,51(3):287-294. ZHAO Han, SHANG Qing, YANG Meng, et al. Surface modification of ultra-high molecular weight polyethylene fiber by catechol-tetraethylenepentamine[J]. Acta Polymerica Sinica, 2020, 51(3): 287-294. [50] HU X, TANG T H, TANG G, et al. Enhanced interfacial adhesion of UHMWPE fibers by alkali treatmentand its behavior to PI resins[J]. Journal of Thermoplastic Composite Materials, 2019, 32(1): 52-61. [51] 赵晗,尚晴,杨萌,等.ZnO纳米棒改性超高分子量聚乙烯纤维及其性能研究[J].高分子学报,2020,51(6):649-655. ZHAO Han, SHANG Qing, YANG Meng, et al. Surface modification and properties of UHMWPE fibers by ZnO nanoro[J]. Acta Polymerica Sinica, 2020, 51(6): 649-655. [52] 范望喜.多孔UHMWPE仿生骨材料的制备和性能研究[J].化工新型材料,2020,48(9):86-90. FAN Wangxi. Study on preparation and properties of porous bionic bone materials based on UHMWPE[J]. New Chemical Materials, 2020, 48(9): 86-90. |
[1] | 聂磊, 李家炜, 严小飞, 戚栋明, 杨晓明, 李耀邦, 朱晨凯. 全降解玻璃纤维增强复合材料的制备及其性能[J]. 现代纺织技术, 2022, 30(5): 104-111. |
[2] | 陈嘉炜, 张宏伟, 高晓平. 氧化石墨烯改性碳玻混杂纤维增强复合材料的压缩性能[J]. 现代纺织技术, 2022, 30(2): 75-84. |
[3] | 赵洪杰, 祝成炎, 金肖克, 翁小霞, 田伟. 机织物/隔热涂层三明治结构复合材料的制备及红外隐身性能[J]. 现代纺织技术, 2022, 30(1): 61-69. |
[4] | 谢章婷, 郑连刚, 周家德, 张凤翔, 许福军. 环氧泡沫填充间隔织物复合材料的弯曲性能[J]. 现代纺织技术, 2022, 30(1): 54-60. |
[5] | 刘娜, 陈香云, 张永锋, 吕文静, 焦志颖. 烟气净化用滤料表面改性及其性能[J]. 现代纺织技术, 2022, 30(1): 162-168. |
[6] | 刘凡,赵晓明,郑煜昊,赵润德. 导电聚合物/磁性粒子复合吸波材料的研究进展[J]. 现代纺织技术, 2021, 0(6): 7-18. |
[7] | 王景景. 不同结构三维UHMWPE纤维复合材料的性能研究[J]. 现代纺织技术, 2021, 0(4): 12-17. |
[8] | 杨艳凤,刘元军,赵晓明. 掺杂剂掺杂聚吡咯复合吸波材料的研究进展[J]. 现代纺织技术, 2021, 0(3): 8-15. |
[9] | 李婷婷,申晓,金肖克,祝成炎,田伟. 涤纶表面改性处理对其增强复合材料冲击性能的影响[J]. 现代纺织技术, 2020, 0(5): 8-12. |
[10] | MD Ali Hossain,陈维国,王成龙,金淑兰,吴浩,张亚. 氧等离子体处理对涤纶织物数码转移印花的作用[J]. 现代纺织技术, 2020, 0(2): 70-75. |
[11] | 黄耀丽,吕丽华. 工字形三维机织复合材料的弯曲性能[J]. 现代纺织技术, 2019, 0(06): 16-20. |
[12] | 黄仙,于湖生,李芳,王菲. 香蕉纤维增强不饱和聚酯树脂复合材料的制备工艺研究[J]. 现代纺织技术, 2019, 0(03): 5-9. |
[13] | 李婉婉,汪进前,盖燕芳,邓成浩,李朝利. 碳纤维混杂三维正交复合材料拉伸性能研究[J]. 现代纺织技术, 2019, 0(02): 1-5. |
[14] | 申晓,刘向东,田伟,祝成炎. 正交准正交复合三维机织复合材料力学性能[J]. 现代纺织技术, 2019, 0(02): 6-11. |
[15] | 董晶,赵坤伟,程金亮,汪亮. 蜘蛛丝纤维的研究现状与展望[J]. 现代纺织技术, 2019, 0(01): 15-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||