[1]HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
[2]DIEDERIK P K, MAX W. Auto-encoding variational bayes . ArXiv,2013:1312.6114.
[3]GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2672-2680.
[4]PARK T, LIU M Y, WANG T C, et al. Semantic image synthesis with spatially-adaptive normalization[C]Proceedings of the IEEE CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019: 2337-2346.
[5]KAMADA S, ICHIMURA T, HARA A, et al. Adaptive structure learning method of deep belief network using neuron generation-annihilation and layer generation[J]. Neural Computing and Applications, 2019, 31(11): 8035-8049.
[6]HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[7]SUSSKIND J M, HINTON G E, MOVELLAN J R, et al. Generating facial expressions with deep belief nets[J]. Affective Computing, Emotion Modelling, Synthesis and Recognition, 2008, 2008(5): 421-440.
[8]OSINDERO S, HINTON G E. Modeling image patches with a directed hierarchy of Markov random fields[C]Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2007: 1121-1128.
[9]TORRALBA A, FERGUS R, WEISS Y. Small codes and large image databases for recognition[C]Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
[10]VAHDAT A, KAUTZ J. Nvae: A deep hierarchical variational autoencoder . ArXiv,2020:2007.03898.
|