现代纺织技术 ›› 2023, Vol. 31 ›› Issue (3): 251-262.
出版日期:
2023-05-10
网络出版日期:
2023-05-26
作者简介:
陆嘉渔(1999—),女,浙江湖州人,硕士研究生,主要从事功能纺织品开发方面的研究。
基金资助:
Published:
2023-05-10
Online:
2023-05-26
摘要: 近年来,由于新型冠状病毒、甲流等多种传染病频发,抑制和切断病菌的传播成为人们密切关注的焦点。纺织品在使用过程中能够为病菌的生长和繁殖提供有利环境,对人类健康产生极大的影响。提升纺织品的抗菌性能是切断或减缓病菌传播的重要手段,因此抗菌纺织品的研究和应用得到了广泛关注。对纺织品进行抗菌整理是开发抗菌纺织品的常用方法,本文总结了纺织品抗菌整理常用的无机抗菌剂、有机抗菌剂及天然抗菌剂等三类抗菌剂的抗菌作用机理、优缺点以及应用,并对每种抗菌材料的抗菌效果进行了评价。也介绍了纺织品抗菌整理常用的原纤维法和后整理法等两种方法,并总结了纺织品抗菌评价的主要测试手段。最后,本文对纺织品上抗菌整理剂的发展趋势进行展望。
中图分类号:
陆嘉渔, 蔡国强, 高宗春, 宋江晓, 张艳, 戚栋明. 纺织品常用的抗菌整理剂的应用综述[J]. 现代纺织技术, 2023, 31(3): 251-262.
LU Jiayu, CAI Guoqiang, GAO Zongchun, SONG Jiangxiao, ZHANG Yan, QI dongming, . Review of commonly used antibacterial finishing agents for textiles[J]. Advanced Textile Technology, 2023, 31(3): 251-262.
[1] FERNANDO S, GUNASEKARA T, HOLTON J. Antimicrobial Nanoparticles: applications and mechanisms of action[J]. Sri Lankan Journal of Infectious Diseases, 2018, 8(1): 2. [2] SEONG M, LEE D G. Silver nanoparticles against Salmonella enterica serotype typhimurium: Role of inner membrane dysfunction[J]. Current Microbiology, 2017, 74(6): 661-670. [3] 王荣国, 王进美. 纺织品抗菌剂及其整理方法[J]. 合成纤维, 2021, 50(8): 24-26, 37. WANG Rongguo, WANG Jinmei. Antimicrobial finishing of textile and its finishing method[J]. Synthetic Fiber in China, 2021, 50(8): 24-26, 37. [4] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, applications and toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931. [5] IVASK A, ELBADAWY A, KAWEETEERAWAT C, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver[J]. ACS Nano, 2014, 8(1): 374-386. [6] EREMENKO A M, PETRIK I S, SMIRNOVA N P, et al. Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles[J]. Nanoscale Research Letters, 2016, 11(1): 28. [7] QUINTEROS M A, CANO ARISTIZÁBAL V, DALMASSO P R, et al. Oxidative stress generation of silver nanoparticles in three bacterial Genera and its relationship with the antimicrobial activity[J]. Toxicology in Vitro, 2016, 36: 216-223. [8] KAWABATA N, Nishiguchi M. Antibacterial activity of soluble pyridinium-type polymers[J]. Applied and Environmental Microbiology, 1988, 54(10): 2532-2535. [9] AGNIHOTRI S, MUKHERJI S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver[J]. Nanoscale, 2013, 5(16):7328-7340. [10] LI P P, WU H X, DONG A. Ag/AgX nanostructures serving as antibacterial agents: Achievements and challenges[J]. Rare Metals, 2022, 41(2): 519-539. [11] ZHANG G Y, LIU Y, GAO X L, et al. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles[J]. Nanoscale Research Letters, 2014, 9(1): 216. [12] ZHANG F, WU X L, CHEN Y Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish[J]. Fibers and Polymers, 2009, 10(4): 496-501. [13] ZHANG Z Y, LV X D, CHEN Q D, et al. Complex coloration and antibacterial functionalization of silk fabrics based on noble metal nanoparticles[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 155892501986694. [14] CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13): 135101. [15] JEEVANANDAM J, CHAN Y S, DANQUAH M K. Biosynthesis of metal and metal oxide nanoparticles[J]. ChemBioEng Reviews, 2016, 3(2): 55-67. [16] RANJAN S, RAMALINGAM C. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation[J]. Environmental Chemistry Letters, 2016, 14(4): 487-494. [17] RAEISI M, KAZEROUNI Y, MOHAMMADI A, et al. Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties[J]. International Journal of Biological Macromolecules, 2021, 171: 158-165. [18] INGUANTA R, GARLISI C, SPANÒ T, et al. Growth and photoelectrochemical behaviour of electrodeposited ZnO thin films for solar cells[J]. Journal of Applied Electrochemistry, 2013, 43(2): 199-208. [19] SEIL J T, WEBSTER T J. Antimicrobial applications of nanotechnology: Methods and literature[J]. International Journal of Nanomedicine, 2012, 7: 2767-2781. [20] ADAMS L K, LYON D Y, ALVAREZ P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532. [21] LIPOVSKY A, NITZAN Y, GEDANKEN A, et al. Antifungal activity of ZnO nanoparticles: The role of ROS mediated cell injury[J]. Nanotechnology, 2011, 22(10): 105101. [22]Ghasemi N, Seyfi J, Asadollahzadeh M J. Imparting superhydrophobic and antibacterial properties onto the cotton fabrics: synergistic effect of zinc oxide nanoparticles and octadecanethiol[J]. Cellulose, 2018,25(7): 4211-4222. [23] CAI L, CHEN J N, LIU Z W, et al. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against ralstonia solanacearum[J]. Frontiers in Microbiology,2018, 9: 790. [24] NGUYEN T N, BUI V K H, LEE Y C. Development of antimicrobial MgO-CuO/activated carbon fiber[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(7): 4055-4059. [25] JANG H, RYOO S R, KOSTARELOS K, et al. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores[J]. Biomaterials, 2013, 34(13): 3503-3510. [26] AL-JUMAILI A, ALANCHERRY S, BAZAKA K, et al. The electrical properties of plasma-deposited thin films derived from pelargonium graveolens[J]. Electronics, 2017, 6(4): 86. [27] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: A review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. [28] PINTO A M, GONÇALVES I C, MAGALHÃES F D. Graphene-based materials biocompatibility: A review[J]. Colloids and Surfaces B: Biointerfaces, 2013, 111: 188-202. [29] TU Y S, LV M, XIU P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets [J]. Nature Nanotechnology, 2013, 8(8): 594-601. [30] CHEN D, WANG G, LI J H, et al. Graphene film synthesis on SiGe semiconductor substrate for field-effect transistor[J]. Materials Letters, 2014, 135: 222-225. [31] GHOSH S, GANGULY S, DAS P, et al. Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application[J]. Fibers and Polymers, 2019, 20(6): 1161-1171. [32] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation[J]. Environmental Science & Technology, 2014, 48(17): 9995-10009. [33] PIEPER H, HALBIG C E, KOVBASYUK L, et al. Oxo-functionalized graphene as a cell membrane carrier of nucleic acid probes controlled by aging[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(43): 15389-15395. [34] ROMERO-VARGAS CASTRILLÓN S, PERREAULT F, DE FARIA A F, et al. Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy[J]. Environmental Science & Technology Letters, 2015, 2(4): 112-117. [35] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736. [36] ZHAO L H, ZHANG S Y, WANG Y W, et al. Antibacterial graphene oxide/chitosan composite compression garment fabric[J]. Fibers and Polymers, 2022, 23(7): 1834-1845. [37] GURUNATHAN S, HAN J W, DAYEM A A, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa[J]. International Journal of Nanomedicine [38] PAN N Y, WEI Y M, ZUO M D, et al. Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125186. [39] 顾宁, 李洋. 纳米颗粒对细胞膜的作用[J]. 生物物理学报, 2010, 26(8): 623-637. GU Ning, LI Yang. Interaction of nanoparticles on cell membranes[J].Acta biophysica sinica,2010,26(08):623-637. [40] KANG S, PINAULT M, PFEFFERLE L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity[J]. Langmuir, 2007, 23(17): 8670-8673. [41] SHI H C, LIU H Y, LUAN S F, et al. Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers[J]. RSC Advances,2016,6(23): 19238-19244. [42] JATOI A W, OGASAWARA H, KIM I S, et al. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications[J]. Materials Science and Engineering: C, 2020, 110: 110679. [43] 李俊, 张勇杰, 李运玲, 等. 季铵盐杀菌剂的现状与发展趋势[J]. 日用化学品科学, 2015, 38(9): 32-35,39. LI Jun, ZHANG Yongjie, LI Yunling, et al. Current state and development of quaternary ammonium salt bactericides. [44] 周旋峰, 石荣莹. 阳离子杀菌剂的现状及其发展趋势[J]. 中国洗涤用品工业, 2020(S1): 187-193. ZHOU Xuanfeng, SHI Rongyin. Current state and development trend of cationic bactericides[J]. China Cleaning Industry, 2020(S1): 187-193. [45] SIMONCIC B, TOMSIC B. Structures of novel antimicrobial agents for textiles: A review[J]. Textile Research Journal, 2010, 80(16): 1721-1737. [46] GAO D G, LI Y J, LYU B, et al. Silicone quaternary ammonium salt based nanocomposite: a long-acting antibacterial cotton fabric finishing agent with good softness and air permeability[J]. Cellulose, 2020, 27(2):1055-1069. [47] ZHU C Y, CHANG D, WANG X, et al. Novel antibacterial fibers of amphiphilic N-halamine polymer prepared by electrospinning[J]. Polymers for Advanced Technologies, 30(6):1386-1393. [48] ZHANG C, CUI F, ZENG G M, et al. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment[J]. Science of the Total Environment, 2015, 518/519: 352-362. [49] DONG A, WANG Y J, GAO Y Y, et al. Chemical insights into antibacterial N-halamines[J]. Chemical Reviews, 2017, 117(6): 4806-4862. [50] CHEN X Q, LIU Z L, CAO W W, et al. Preparation, characterization, and antibacterial activities of quaternarized N-halamine-grafted cellulose fibers[J]. Journal of Applied Polymer Science, 2015, 132(43):42702. [51] ORHAN M, KUT D, GUNESOGLU C. Use of triclosan as antibacterial agent in textiles[J]. Indian Journal of Fibre & Textile Research, 2007, 32(1): 114-118. [52] ORHAN M. Triclosan applications for biocidal functionalization of polyester and cotton surfaces[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 155892502094010. [53] DINWIDDIE M T, TERRY P D, CHEN J G. Recent evidence regarding triclosan and cancer risk[J]. International Journal of Environmental Research and Public Health, 2014, 11(2): 2209-2217. [54] 刘小芳, 吴云明, 李建德, 等. 苯扎氯铵溶液一次性用于感染腹腔冲洗的可行性研究[J]. 中国临床药理学与治疗学, 2013, 18(8): 885-890. LIU Xiaofang, WU Yunmin, LI Jiande, et al. Benzalkonium chloride solution feasibility research on infected abdomen for disposable peritoneal irrigation[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2013,18(8):885-890. [55] HAN H, ZHU J, WU D Q, et al. Inherent guanidine nanogels with durable antibacterial and bacterially antiadhesive properties[J]. Advanced Functional Materials, 2019, 29(12): 1806594. [56] SHENTU X Y, GUAN Y, WANG L L, et al. Preparation of antibacterial down fibers by chemical grafting using novel guanidine salt oligomer[J]. Polymers for Advanced Technologies, 2021, 32(10): 4082-4093. [57] LIU X L, LIU H, QU X, et al. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment[J]. Journal of Materials Science Materials in Medicine, 2017, 28(10): 146. [58] SU L, YU Y, ZHAO Y S, et al. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method[J]. Scientific Reports, 2016, 6: 24420. [59] LI Z M, SHAN X T, CHEN Z D, et al. Applications of surface modification technologies in nanomedicine for deep tumor penetration[J]. Advanced Science, 2020, 8(1): 2002589. [60] LI Y Z, WANG B J, SUI X F, et al. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings[J]. Applied Surface Science, 2018, 435: 1337-1343. [61] SHAHIDI F, ARACHCHI J K V, JEON Y J. Food applications of chitin and chitosans[J]. Trends in Food Science & Technology, 1999, 10(2): 37-51. [62] SUDARSHAN N R, HOOVER D G, KNORR D. Antibacterial action of chitosan [J]. Food Biotechnology, 1992, 6(3): 257-272. [63] RAAFAT D, VON BARGEN K, HAAS A, et al. Insights into the mode of action of chitosan as an antibacterial compound[J]. Applied and Environmental Microbiology, 2008, 74(12): 3764-3773. [64] TANG R L, YU Z M, ZHANG Y, et al. Synthesis, characterization, and properties of antibacterial dye based on chitosan[J]. Cellulose, 2016, 23(3): 1741-1749. [65] YU J, PANG Z Y, ZHANG J, et al. Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548: 117-124. [66] GOY R C, MORAIS S T B, ASSIS O B G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth[J]. Revista Brasileira De Farmacognosia, 2016, 26(1): 122-127. [67] RESHMA A, PRIYADARISINI V B, AMUTHA K. Sustainable antimicrobial finishing of fabrics using natural bioactive agents-a review[J]. International Journal of Life Science and Pharma Research, 2018, 8(4): 10-20. [68] LIU M J, LU Y L, GAO P, et al. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens[J]. Poultry Science, 2020, 99(4): 2196-2202. [69] MAHMUD M M, ZAMAN S, PERVEEN A, et al. Controlled release of curcumin from electrospun fiber mats with antibacterial activity[J]. Journal of Drug Delivery Science and Technology, 2020, 55: 101386. [70] WANG Q X, LIU S L, LU W J, et al. Fabrication of Curcumin@Ag loaded core/shell nanofiber membrane and its synergistic antibacterial properties[J]. Frontiers in Chemistry, 2022, 10 : 870666. [71] BLOCK E. The chemistry of garlic and Onions[J]. Scientific American, 1985, 252(3): 114-119. [72] CAVALLITO C J, BAILEY J H. Allicin, the antibacterial principle of allium sativum. I. isolation, physical properties and antibacterial action[J]. Journal of the American Chemical Society, 1944, 66(11): 1950-1951. [73] OMAR S H, AL-WABEL N A. Organosulfur compounds and possible mechanism of garlic in cancer[J]. Saudi Pharmaceutical Journal, 2010, 18(1): 51-58. [74] 熊晓辉, 李星, 孙芸, 等. 大蒜中硫代亚磺酸酯提取工艺及其稳定性研究[J]. 食品与发酵工业, 2013, 39(1): 194-198. XIONG Xiaohui, LI Xing, SUN Yun, et al. Stability of thiosulfinates and its extraction technology in garlic[J]. Food and Fermentation Industries, 2013, 39(1): 194-198. [75] ANKRI S, MIRELMAN D. Antimicrobial properties of allicin from garlic[J]. Microbes and infection, 1999, 1(2): 125-129. [76] CUI Y, ZHAO Y Y, TIAN Y, et al. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli[J]. Biomaterials, 2012, 33(7): 2327-2333. [77] EDIKRESNHA D, SUCIATI T, MUNIR M M, et al. Polyvinylpyrrolidone/cellulose acetate electrospun composite nanofibres loaded by glycerine and garlic extract with in vitro antibacterial activity and release behaviour test[J]. RSC Advances, 2019, 9(45): 26351-26363. [78] HUSSAIN N, ULLAH S, SARWAR M N, et al. Fabrication and characterization of novel antibacterial ultrafine nylon-6 nanofibers impregnated by garlic sour[J]. Fibers and Polymers, 2020, 21(12): 2780-2787. [79] ZHOU Y, CHEN X X, CHEN T T, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science & Technology, 2022, 123: 264-280. [80] ALKAHTANI J, SOLIMAN ELSHIKH M, ALMAARY K S, et al. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides [J]. Saudi Journal of Biological Sciences,2020, 27(11): 2929-2935. [81] DE ANDRADE E W V, DUPONT S, BENEY L, et al. Osmoporation is a versatile technique to encapsulate fisetin using the probiotic bacteria Lactobacillus acidophilus[J]. Applied Microbiology and Biotechnology, 2022, 106(3): 1031-1044. [82] MENG Q R, LI Y H, XIAO T C, et al. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus[J]. International Journal of Biological Macromolecules, 2017, 105: 431-437. [83] LIN L, ZHU Y L, LI C Z, et al. Antibacterial activity of PEO nanofibers incorporating polysaccharide from dandelion and its derivative[J]. Carbohydrate Polymers, 2018, 198: 225-232. [84] LIANG X P, ZHU M J, LI H F, et al. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables[J]. Advanced Functional Materials, 2022, 32(42): 2200162. [85] 张卓成. 抗菌整理剂的设计合成及其在纺织品中的应用[D].深圳: 深圳大学, 2020. ZHANG Zhuochen. Design and Synthesis of Antibacterial Finishing Agent and Its Application in Textile [D].Shenzhen:Shenzhen University, 2020. [86] 梁卡, 邓浩, 田艳红, 等. 纺织品抗菌性能测试方法[J]. 国际纺织导报, 2015, 43(9): 54-56,58. LIANG Ka, DENG Hao, TIAN Yanhong, et al. Testing methods for antibacterial activity of textiles[J]. Melliand China. 2015, 43(09): 54-56,58. |
[1] | 陶园, 王其才. 古代纺织品的染料提取及鉴定分析方法研究进展[J]. 现代纺织技术, 2023, 31(4): 217-226. |
[2] | 乔阳阳, 刘明雪, 刘琼溪, 周岚, 邵建中. 磁控溅射技术在纺织领域的应用研究[J]. 现代纺织技术, 2023, 31(2): 204-. |
[3] | 周随波, 王哲山, 胡建臣, 张克勤. 织物电极的制备及其在间隔织物摩擦纳米发电机的应用研究进展[J]. 现代纺织技术, 2023, 31(1): 54-63. |
[4] | 冯源, 周金利, 杨红英, 王政, 熊帆, 杜立新. 刺绣技术在智能纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(1): 82-91. |
[5] | 韩梦瑶, 任松, 葛灿, 方剑. 用于个人热管理的被动调温服装材料研究进展[J]. 现代纺织技术, 2023, 31(1): 92-103. |
[6] | 李诗雅, 金肖克, 田伟, 李艳清, 祝成炎, 张红霞. 维生素E护肤纺织品的研究现状及发展趋势[J]. 现代纺织技术, 2023, 31(1): 293-300. |
[7] | 陈爽, 黄倩雯, 刘灿, 王彩虹, 王璐瑶, 叶翔宇, 王来力. 废旧纺织品服装回收再利用环境影响评价综述[J]. 现代纺织技术, 2022, 30(6): 28-36. |
[8] | 苏婧, 兰春桃, 王静, 关玉, 付少海. 纺织基电磁屏蔽材料的发展与应用[J]. 现代纺织技术, 2022, 30(6): 219-230. |
[9] | 诸葛依娜, 刘福娟. 仿生微纳结构抗菌材料综述[J]. 现代纺织技术, 2022, 30(5): 222-234. |
[10] | 朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. |
[11] | 王镕琛, 张一风, 段书霞, 石沛龙, 贾江换, 张恒. 液体非对称传输非织造材料的成型方法及其应用研究进展[J]. 现代纺织技术, 2022, 30(3): 13-22. |
[12] | 李慧慧, 王群, 贾伟科, 王际平. 多功能超疏水纺织品的制备及应用研究进展[J]. 现代纺织技术, 2022, 30(3): 39-46. |
[13] | 贺显伟. 色彩经济时代纺织品创新设计中的色彩策略[J]. 现代纺织技术, 2022, 30(2): 113-117. |
[14] | 叶甫荣,俞邱娈,蔡加阳. 蓝标生态纺织品认证要求和应对措施[J]. 现代纺织技术, 2021, 0(5): 55-61. |
[15] | 程飞阳,祝国成. 石墨烯改性纺织品研究进展[J]. 现代纺织技术, 2021, 0(4): 107-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||