[1] 汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报, 2014, 41(8): 1675-1683.
WANG Lifen, LI Zheng, JIA Shiru, et al. The research progress in characteristics and applications of bacterial cellulose[J]. Microbiology China, 2014, 41(8): 1675-1683.
[2] BLANCO PARTE F G, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414.
[3] SRIPLAI N, PINITSOONTORN S. Bacterial cellulose-based magnetic nanocomposites: A review[J]. Carbohydrate Polymers, 2021, 254: 117228.
[4] 袁微微, 唐海哲. 静电纺细菌纤维素基复合材料研究进展[J]. 轻纺工业与技术, 2022, 51(5): 109-111.
YUAN Weiwei, TANG Haizhe. Research progress on electrostatically spun bacterial cellulose-based composites[J]. Light and Textile Industry and Technology, 2022, 51(5): 109-111.
[5] 白雪梦, 王璐瑶, 郑雅慧, 等. 纤维素/无机复合材料:纤维素及其衍生物的矿化与应用[J]. 复合材料科学与工程, 2022, 339(4): 120-128.
BAI Xuemeng, WANG Luyao, ZHENG Yahui, et al. Organic/inorganic composite materials: Mineralization and application of cellulose and its derivatives[J]. Composites Science and Engineering, 2022, 339(4): 120-128.
[6] BINELLI M R, RVHS P A, PISATURO G, et al. Living materials made by 3D printing cellulose-producing bacteria in granular gels[J]. Biomaterials Advances, 2022, 141: 213095.
[7] CAZON P, VAZQUEZ M. Bacterial cellulose as a biodegradable food packaging material: A review[J]. Food Hydrocolloids, 2021, 113: 106530.
[8] 田萃钰, 陆赵情, 宁逗逗, 等. 多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能[J]. 复合材料学报, 2023, 40(2): 1096-1104.
TIAN Cuiyu, LU Zhaoqing, NING Doudou, et al. Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1096-1104.
[9] UL-ISLAM M, KHAN S, ULLAH M W, et al. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states[J]. International Journal of Biological Macromolecules, 2019, 137: 247-252.
[10] PHISALAPHONG M, SUWANMAJO T, SANGTHERAPITIKUL P. Novel nanoporous membranes from regenerated bacterial cellulose[J]. Journal of Applied Polymer Science, 2008, 107(1): 292-299.
[11] CHEN P, KIM H S, KWON S M, et al. Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning[J]. Current Applied Physics, 2009, 9(2): e96-e99.
[12] FERGUSON A, KHAN U, WALSH M, et al. Understanding the dispersion and assembly of bacterial cellulose in organic solvents[J]. Biomacromolecules, 2016, 17(5): 1845-1853.
[13] HUANG D, LI D, MO K W, et al. Top-down fabrication of biodegradable multilayer tunicate cellulose films with controlled mechanical properties[J]. Cellulose, 2021, 28(16): 10415-10424.
[14] ZHU M W, JIA C, Wang Y L, et al. Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28566-28571.
[15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[16] 张亚婷, 严心娥, 刘国阳, 等. 煤基石墨烯系列材料的可控制备及其在CO2还原过程中的应用进展[J]. 洁净煤技术, 2022, 28(8): 1-14.
ZHANG Yating, YAN Xin'e, LIU Guoyang, et al. Research progress on controlled preparation of coal based graphene series materials and its application in CO2 reduction process[J]. Clean Coal Technology, 2022, 28(8): 1-14.
[17] 崔静磊, 桂晓光, 王茜, 等. 纤维素改性材料对重金属吸附性能的研究进展[J]. 功能材料, 2021, 52(3): 3050-3059.
CUI Jinglei, GUI Xiaoguang, WANG Qian, et al. Research progress of the adsorption properties of cellulose modified materials for heavy metals[J]. Journal of Functional Materials, 2021, 52(3): 3050-3059.
[18] 马光瑞, 和铭, 杨桂花, 等. 低共熔溶剂体系预处理制备纤维素纳米纤丝及其性能研究[J]. 林产化学与工业, 2021, 41(4): 69-76.
MA Guangrui, HE Ming, YANG Guihua, et al. Preparation of cellulose nanofibril by the pretreatment with deep eutectic solvent system[J]. Chemistry and Industry of Forest Products, 2021, 41(4): 69-76.
[19] 朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸, 2020, 39(9): 74-83.
ZHU Yachong, WU Zhaojun, YU Dongmei, et al. Research status of nanocellulose preparation methods[J]. China Pulp & Paper, 2020, 39(9): 74-83.
[20] 王佳溪, 苏艳群, 刘金刚. 阳离子化纤维素纳米纤丝的制备技术及应用进展[J]. 中国造纸学报, 2022,37(2): 94-101.
WANG Jiaxi, SU Yanqun, LIU Jingang. Advances in preparation and application of cationic cellulose nanofibril[J]. Transactions of China Pulp and Paper, 2022,37(2): 94-101.
[21] WU Z T, CHEN S Y, WU R L, et al. Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers[J]. Chemical Engineering Journal, 2020, 391: 123527.
[22] CAI J, ZHANG L, ZHOU J, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties[J]. Advanced Materials, 2007, 19(6): 821-825.
[23] ZHU K K, WANG Y, LU A, et al. Cellulose/chitosan composite multifilament fibers with two-switch shape memory performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6981-6990.
[24]WANG S, LI T, CHEN C J, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491.
[25] 张晓颖, 荣新山, 徐吉成, 等. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
ZHANG Xiaoying, RONG Xinshan, XU Jicheng, et al. Effect of surface modification of basalt fiber on biofilm attachment[J]. Journal of Materials Engineering, 2019, 47(5): 129-136.
[26] ILLA M P, SHARMA C S, KHANDELWAL M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions[J]. Journal of Materials Science, 2019, 54(18): 12024-12035.
[27] ABRAL H, CHAIRANI M K, RIZKI M D, et al. Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions[J]. Journal of Materials Research and Technology, 2021, 11: 896-904.
[28] USHA RANI M, UDAYASANKAR K, ANU APPAIAH K A. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp[J]. Journal of Applied Polymer Science, 2011, 120(5): 2835-2841.
[29] VELAZQUEZ G, HERRERA-GOMEZ A, MARTIN-POLO M O. Identification of bound water through infrared spectroscopy in methylcellulose[J]. Journal of Food Engineering, 2003, 59(1): 79-84.
[30] 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54-64.
FU Shiyu. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6): 54-64.
[31] 朱杰君, 孙海斌, 吴耀政, 等. 石墨烯的制备、表征及其在透明导电膜中的应用[J]. 物理化学学报, 2016, 32(10): 2399-2410.
ZHU Jiejun, SUN Haibin, WU Yaozheng, et al. Graphene: synthesis, characterization and application in transparent conductive films[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2399-2410.
[32] ZHANG M H, CHEN S Y, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136.
[33] ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5(5): 1671-1677.
[34] BARUD H S, RIBEIRO C A, CRESPI M S, et al. Thermal characterization of bacterial cellulose–phosphate composite membranes[J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 815-818.
[35] 薛元, 曹艳. 环锭纺加捻三角区纤维转移机理及其运动规律分析[J]. 纺织学报, 2005,26(5): 31-33.
XUE Yuan, CAO Yan. Migration mechanism of fibers and their movement analysis in the twisting triangular space of ring spinning[J]. Journal of Textile Research, 2005,26 (5): 31-33.
|