[1]国家统计局. 2022年中国化学纤维产量[EB/OL]. [2023-06-15]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
National Bureau of Statistics. Chemical fiber production in 2022 of China[EB/OL]. [2023-06-15]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
[2]IRMATOVA M B, SODIQALIYEVA F M. Studying the properties of local polyester fiber, formed from polyethylene terephthalate granules[J]. ACADEMICIA: An International Multidisciplinary Research Journal, 2022, 12(6): 16-22.
[3]杨童童, 李世君, 刘峰,等. 阻燃用聚酯纤维的性能及其纺纱工艺探究[J]. 合成技术及应用, 2020, 35(3): 39-44.
YANG Tongtong, LI Shijun, LIU Feng, et al. Research on the properties of flame retardant polyester fiber and spinning process[J]. Synthetic Technology and Application, 2020, 35(3): 39-44.
[4]万雷, 吴文静, 吕佳滨,等. 我国对位芳纶产业链发展现状及展望[J]. 高科技纤维与应用, 2019, 44(3): 21-26.
WAN Lei, WU Wenjing, LV Jiabin, et al. The current situation and prospect of para-aramid industry chain in China[J]. Hi-Tech Fiber and Application, 2019, 44(3): 21-26.
[5]李杜, 陈清清, 张玲丽, 等. 芳纶1414装甲材料的制备及拉伸性能探讨[J]. 棉纺织技术, 2022, 50(9): 19-23.
LI Du, CHEN Qingqing, ZHANG Liling, et al. Preparation and tensile property discussion of aramid 1414 armour material[J]. Cotton Textile Technology, 2022, 50(9): 19-23.
[6]赵智垒, 丁永春, 杨中桂,等. 高性能纤维复合材料在海上风电的应用[J]. 船舶工程, 2022, 44(S1): 51-56.
ZHAO Zhilei, DING Yongchun, YANG Zhonggui,et al. Application of high performance fiber composites in offshore wind power[J]. Ship Engineering, 2022, 44(S1): 51-56.
[7]GALIZIA P, SCITI D, SARAGA F, et al. Off-axis damage tolerance of fiber-reinforced composites for aerospace systems[J]. Journal of the European Ceramic Society, 2020, 40(7): 2691-2698.
[8]任明当, 苏荣, 杨屹. 芳纶纤维在光电线缆中的应用探赜[J]. 光纤与电缆及其应用技术, 2023(1): 1-6.
RENG Mingdang, SU Rong, YANG Yi. Application discussion of aramid fiber in optical and electrical cables[J]. Optical Fiber and Electric Cable and Their, 2023 (1): 1-6.
[9]YOUNES B. A statistical investigation of the influence of the multi-stage hot-drawing process on the mechanical properties of biodegradable linear aliphatic-aromatic co-polyester fibers[J]. Advances in Materials Science and Applications, 2014, 3(4): 186-202.
[10]RAO P N, SABAVATH G K, PAUL S N. Impact of MTA blend % in melt spinning process and polyester properties[J]. SN Applied Sciences, 2021, 3(2): 1-11.
[11]郝浩然. 熔融纺丝组件内流体力学性能的研究[D]. 北京: 北京化工大学, 2021.
HAO Haoran. Study on Hydrodynamic Properties of Melt Spinning Pack[D]. Beijing: Beijing University of Chemical Technology, 2021.
[12]PAPKOV D, DELPOUVE N, DELBREILH L, et al. Quantifying polymer chain orientation in strong and tough nanofibers with low crystallinity: toward next generation nanostructured superfibers[J]. ACS nano, 2019, 13(5): 4893-4927.
[13]MISZTAL-FARAJ B, PĘCHERSKI R B, DENIS P, et al. Modeling of oriented crystallization kinetics of polymers in the entire range of uniaxial molecular orientation[J]. Polymer, 2019, 173: 141-157.
[14]GAN X H, LIU Q, MA X J. The characteristics of melt flow in composite spinning micropore[J]. Advanced Materials Research,2011, 383: 110-115.
[15]SURESH K, SELVAM K, KARUNANITHI B. CFD simulation studies on the flow behavior of power-law fluids used to extrude the polymeric hollow fiber membrane through an angular spinneret[C]//AIP Conference Proceedings. Chennai, India. AIP Publishing, 2019: 160-160.
[16]张伟, 成文凯, 张先明. 涤纶工业丝熔融纺丝过程的数值模拟[J]. 现代纺织技术, 2022, 30(5): 52-59. ZHANG Wei, CHENG Wenkai, ZHANG Xianming. Numerical simulation of melt spinning process of pol yester industrial yarn[J]. Advanced Textile Technology, 2022, 30(5): 52-59.
[17]吴金亮, 王铁军, 孙福, 等. 细旦多孔聚酯预取向丝Barmag环吹纺丝组件的设计[J]. 现代纺织技术, 2021, 29(6): 49-54.
WU Jinliang, WANG Tiejun SUN Fu, et al. Design of Barmag ring blowing spinning assembly of fine denier porous polyester pre-oriented yarn[J]. Advanced Textile Technology, 2021, 29(6): 49-54.
[18]孙华平, 冯培, 杨崇倡. 基于Polyflow对扁平复合导电纤维喷丝板孔道优化设计[J]. 合成纤维工业, 2019, 42(3): 69-73.
SUN Huaping, FENG Pei, YANG Chongchang. Design of spinneret pilot hole for flat composite conductive fibers based on polyflow software[J]. China Synthetic Fiber Industry, 2019, 42(3): 69-73.
[19]付丽, 薛平, 刘丽超, 等. PE-UHMW/PE-HD熔融挤出初生丝挤出胀大现象模拟分析[J]. 工程塑料应用, 2019, 47(4): 53-58.
FU Li, XUE Ping, LIU Lichao, et al. Simulation analysis of extrusion swelling in as-spun filament of the PE-UHMW/PE-HD blends melt extrusion process[J]. Engineering Plastics Application, 2019, 47(4): 53-58.
[20]付丽. 超高分子量聚乙烯熔融挤出初生丝过程的模拟与实验研究[D]. 北京: 北京化工大学, 2019.
FU Li. Simulation and Experimental Study on the Process of Melt Extrusion of Ultra High Molecular Weight Polyethylene[D]. Beijing: Beijing University of Chemical Technology, 2019.
[21]赵力宁,林鑫,黄卫东.较低剪切速率下过冷熔体非枝晶组织的形成与演化[J]. 金属学报, 2011, 47(4): 403-409.
ZHAO Lining, LIN Xin, HUANG Weidong. Formation and evolution of the non-den-dritic morphology in undercooling melt with lower shearing rate[J]. Acta Metallurgica Sinica, 2011, 47(4): 403-409.
[22]DE KORT G, LEONÉ N, STELLAMANNS E, et al. Effect of shear rate on the orientation and relaxation of a vanillic acid based liquid crystalline polymer[J]. Polymers,2018, 10(9): 75-76.
[23]顾家耀. POY条干不匀率影响因素的探讨[J]. 合成纤维工业, 1993, 16(1): 53-56.
GU Jiayao. Discussion on influencing factors of unevenness of POY[J]. China Synthetic Fiber Industry, 1993, 16(1): 53-56.
[24]邹爱国. 黑色锦纶6POY纺丝工艺[J]. 广东化纤, 1999(2): 1-3.
ZOU Aiguo. Black nylon 6POY spinning process[J]. Guandong Chemical Fiber, 1999 (2): 1-3.
|