现代纺织技术 ›› 2024, Vol. 32 ›› Issue (10): 56-67.
出版日期:
2024-10-10
网络出版日期:
2024-10-25
Published:
2024-10-10
Online:
2024-10-25
摘要: 药物输送系统能够最大限度地提高递送药物的治疗效果,并减少副作用,引起了研究者的广泛关注。随着患者治疗需求的不断增加,传统药物输送方法无法充分适应患者体内的需求。而基于静电纺丝纳米纤维的给药系统具有高比表面积、可调节孔隙率、良好的机械耐久性、药物包封性、生物相容性和高缓释性能,为药物载量和可定制释放特性提供了兼容的环境。文章通过对静电纺丝原理以及药物封装方法的阐述,体现了静电纺丝纳米纤维膜作为新兴药物输送载体的独特优势,同时探究了不同种类的载药纳米纤维膜在未来应用中的可能性。分析结果表明,通过静电纺丝法可以制备出不同形貌结构的纳米纤维,并通过合理结构设计可以调控药物在体内的释放行为和效率。因此,将载药纳米纤维功能化,可以得到具有药物缓释、抗菌、消炎等性能的药物输送系统,可为解决某些药物应用困难、收效甚微的难题提供新的途径。
中图分类号:
杨海贞, 魏肃桀, 马闯, 周泽林, 胡亚雯. 静电纺丝纳米纤维在药物输送领域的应用[J]. 现代纺织技术, 2024, 32(10): 56-67.
YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, HU Yawen. Research on the application of electrospinning nanofibers in the field of drug delivery[J]. Advanced Textile Technology, 2024, 32(10): 56-67.
[1]MANZARI M T, SHAMAY Y, KIGUCHI H, et al. Targeted drug delivery strategies for precision medicines[J]. Nature Reviews Materials, 2021, 6(4): 351-370. [2]LURAGHI A, PERI F, MORONI L. Electrospinning for drug delivery applications: A review[J]. Journal of Controlled Release, 2021, 334: 463-484. [3]JEONG W Y, KWON M, CHOI H E, et al. Recent advances in transdermal drug delivery systems: A review[J]. Biomaterials Research, 2021, 25(1): 24 [4]苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J]. 东华大学学报(自然科学版), 2024, 50(1): 45-54. SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: Visual bibliometric analysis based on CNKI database[J]. Journal of Donghua University (Natural Science), 2024, 50(1): 45-54. [5]于超群, 龙云泽, 刘现峰, 等. 载药静电纺丝纤维研究及应用进展[J]. 青岛大学学报(医学版), 2023, 59(1): 147-150. YU Chaoqun, LONG Yunze, LIU Xianfeng, et al. Advances in the research and application of drug-loaded electrospinning nanofibers[J]. Journal of Qingdao University(Medical Sciences), 2023, 59(1): 147-150. [6]KIANFAR E. Magnetic nanoparticles in targeted drug delivery: A review[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(7): 1709-1735. [7]MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nature Reviews Drug Discovery, 2021, 20(2): 101-124. [8]BALUSAMY B, CELEBIOGLU A, SENTHAMIZHAN A, et al. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems-A systematic review[J]. Journal of Controlled Release, 2020, 326: 482-509. [9]何玲霞, 樊之瑀, 杜雨佳, 等. 静电纺丝技术在软骨修复中的应用[J]. 华西医学, 2023, 38(10): 1559-1563. HE Lingxia, FAN Zhiyu, DU Yujia, et al. Application of electrospinning for cartilage repair[J]. West China Medical Journal, 2023, 38(10): 1559-1563. [10]GUO Y, WANG X, SHEN Y, et al. Research progress, models and simulation of electrospinning technology: A review[J]. Journal of Materials Science, 2022, 57(1): 58-104. [11]NADAF A, GUPTA A, HASAN N, et al. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications[J]. RSC Advances, 2022, 12(37): 23808-23828. [12]屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(03): 1141-1152. QU Zhan, XIA Guangbo, FNAG Jian. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Materiae Compositae Sinica, 2024, 41(03): 1141-1152. [13]CHEN J, YU Z, LI C, et al. Review of the principles, devices, parameters, and applications for centrifugal electrospinning[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200057. [14]SONG J, LIN X, EE L Y, et al. A review on electrospinning as versatile supports for diverse nanofibers and their applications in environmental sensing[J]. Advanced Fiber Materials, 2023, 5(2): 429-460. [15]付征, 穆齐锋, 张青松, 等. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. FU Zheng, MU Qifeng, ZHANG Qingsong, et al. Research progress in colloidal electrospun micro/nano fibers[J]. Journal of Textile Research, 2023, 44(10): 196-204. [16]ODULARU A T. Basic principles of electrospinning, mechanisms, nanofibre production, and anticancer drug delivery[J]. Journal of Chemistry, 2022, 2022: 9283325. [17]张树智, 曲鹏飞, 韩俊泉, 等. 静电纺丝构建中药控释系统的研究及应用[J]. 中国组织工程研究, 2024, 28(17): 2759-2765. ZHANG Shuzhi, QU Pengfei, HAN Junquan, et al. Research and application of electrospinning drug delivery systems containing traditional Chinese medicine[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(17): 2759-2765. [18]MIRANDA-CALDERON L, YUS C, LANDA G, et al. Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings[J]. International Journal of Pharmaceutics, 2022, 624: 122003. [19]DING Y, LI W, ZHANG F, et al. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy[J]. Advanced Functional Materials, 2019, 29(2): 1802852. [20]张子浩, 陈威亚. 静电纺丝喷丝装置研究进展[J]. 纺织科技进展, 2023 (8): 1-3. ZHANG Zihao, CHEN Weiya. Research progress of electrospinning apparatus[J]. Progress in Textile Science & Technology, 2023(8): 1-3. [21]WU J, ZHANG Z, GU J, et al. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers[J]. Journal of Controlled Release, 2020, 320: 337-346. [22]HAI T, WAN X, YU D G, et al. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile[J]. Materials & Design, 2019, 162: 70-79. [23]KRYSIAK Z J, STACHEWICZ U. Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15(1): 1829. [24]WANG Z, KANG Y, ZHAO S, et al. Self‐limiting assembly approaches for nanoadditive manufacturing of electronic thin films and devices[J]. Advanced Materials, 2020, 32(3): 1806480. [25]张卓然, 周虎, 朱雅琳, 等. 静电纺丝的癌症治疗研究进展[J]. 海峡药学, 2021, 33(8): 87-90. ZHANG Zhuoran, ZHOU Hu, ZHU Yalin, et al. Research progress of cancer treatment by electrospinning[J]. Strait Pharmaceutical Journal, 2021, 33(8): 87-90. [26]TAJIK M, SEYED-SADJADI M, ZARE K, et al. Preparation, characterization, and application of electrospun BAG/CMC/β-CD nanofibers for flutamide drug delivery[J]. Korean Journal of Chemical Engineering, 2024, 41(3): 853-868. [27]YAN E, JIANG J, YANG X, et al. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer[J]. Journal of Drug Delivery Science and Technology, 2020, 55: 101455. [28]SHAMSIPOUR M, MANSOURI A M, MORADIPOUR P. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release[J]. AAPS PharmSciTech, 2019, 20(7): 259. [29]MITXELENA-IRIBARREN O, RIERA-PONS M, PEREIRA S, et al. Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems[J]. Polymer Bulletin, 2023, 80(7): 7763-7778. [30]LI J, LI J, YAO Y, et al. Biodegradable electrospun nanofibrous platform integrating antiplatelet therapy-chemotherapy for preventing postoperative tumor recurrence and metastasis[J]. Theranostics, 2022, 12(7): 3503-3517. [31]LIU C, ZHU Y, LUN X, et al. Effects of wound dressing based on the combination of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound healing[J]. Bioengineered, 2022, 13(2): 4328-4339. [32]SEQUEIRA R S, MIGUEL S P, CABRAL C S D, et al. Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration[J]. International Journal of Pharmaceutics, 2019, 570: 118640. [33]BANDEIRA M, CHEE B S, FRASSINI R, et al. Antimicrobial PAA/PAH electrospun fiber containing green synthesized zinc oxide nanoparticles for wound healing[J]. Materials, 2021, 14(11): 2889. [34]ALMUKAINZI M, EL-MASRY T A, NEGM W A, et al. Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats[J]. International Journal of Pharmaceutics, 2022, 625: 122106. [35]CHANDIRA R M, PETHAPPACHETTY P, NARAYANAN G R, et al. Design, optimization and evaluation of nanofibers containing NSAID for controlled drug delivery system[J]. Asian Journal of Biological and Life Sciences, 2022, 11(2): 389-396. [36]CELEBIOGLU A, UYAR T. Fast dissolving oral drug delivery system based on electrospun nanofibrous webs of cyclodextrin/ibuprofen inclusion complex nanofibers[J]. Molecular pharmaceutics, 2019, 16(10): 4387-4398. [37]SUN C, ZOU L, XU Y, et al. Ibuprofen-loaded poly(lactic acid) electrospun mats: the morphology, physicochemical performance, and in vitro drug release behavior[J]. Macromolecular Materials and Engineering, 2020, 305(12): 2000457. [38]RIAZ T, KHENOUSSI N, RATA D M, et al. Blend electrospinning of poly(ɛ-caprolactone) and poly (ethylene glycol-400) nanofibers loaded with ibuprofen as a potential drug delivery system for wound dressings[J]. AUTEX Research Journal, 2023, 23(1): 66-76. [39]AL-BAADANI M A, HII RU YIE K, AL-BISHARI A M, et al. Co-electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration[J]. Materials & Design, 2021, 209: 109962. [40]GHASEMVAND F, KABIRI M, HASSAN-ZADEH V, et al. Chitosan, polyethylene oxide/polycaprolactone electrospun core/shell nanofibrous mat containing rosuvastatin as a novel drug delivery system for enhancing human mesenchymal stem cell osteogenesis[J]. Frontiers in Molecular Biosciences, 2023, 10: 1220357. [41]MISZUK J, LIANG Z, HU J, et al. An elastic mineralized 3D electrospun PCL nanofibrous scaffold for drug release and bone tissue engineering[J]. ACS Applied Bio Materials, 2021, 4(4): 3639-3648. [42]BIRHANU G, TANHA S, AKBARI JAVAR H, et al. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery[J]. Pharmaceutical Development and Technology, 2019, 24(3): 338-347. [43]REZK A I, KIM K S, KIM C S. Poly(ε-caprolactone)/poly(glycerol sebacate) composite nanofibers incorporating hydroxyapatite nanoparticles and simvastatin for bone tissue regeneration and drug delivery applications[J]. Polymers, 2020, 12(11): 2667. [44]TURAN C U, GUVENILIR Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections[J]. European Journal of Pharmaceutical Sciences, 2022, 170: 106113. [45]DODERO A, ALLOISIO M, CASTELLANO M, et al. Multilayer alginate-polycaprolactone electrospun membranes as skin wound patches with drug delivery abilities[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31162-31171. [46]TIPDUANGTA P, WATCHARATHIRAWONGS W, WARITDECHA P, et al. Electrospun cellulose acetate/polyvinylpyrrolidone fiber mats as potential cosmetic under-eye masks for caffeine delivery[J]. Journal of Drug Delivery Science and Technology, 2023, 86: 104732. [47]PARN F N, AYDEMIR I N, TANER G, et al. Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility[J]. Journal of Industrial Textiles, 2022, 51: 1323S-1347S. [48]HEIDARi M, BAHRAMI S H, RANJBAR-MOHAMMADI M, et al. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering[J]. Materials Science and Engineering: C, 2019, 103: 109768. [49]ZECH J, LEISZ S, GOETTEL B, et al. Electrospun Nimodipine-loaded fibers for nerve regeneration: Development and in vitro performance[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151: 116-126. [50]DOLCI L S, PERONE R C, DI GESU R, et al. Design and in vitro study of a dual drug-loaded delivery system produced by electrospinning for the treatment of acute injuries of the central nervous system[J]. Pharmaceutics, 2021, 13(6): 848. |
[1] | 魏启程, 王洁琼, 林万里, 田 伟, 李 雅. 多尺度PAN/ZnO亲水纤维的制备及其浸润机制[J]. 现代纺织技术, 2024, 32(8): 46-55. |
[2] | 朱灵奇, 刘涛, 徐国平, 仇巧华, AWOKE ANTENEH Tilahun, 周家宝, 王艳敏. 同轴静电纺壳聚糖/聚氧化乙烯-丝素纤维的制备及其生物活性[J]. 现代纺织技术, 2024, 32(7): 48-57. |
[3] | 周家宝, 刘 涛, 仇巧华, 朱灵奇, 王艳敏, 丁新波. 丝素-聚苯胺复合纳米纤维膜的制备及其性能[J]. 现代纺织技术, 2024, 32(5): 9-17. |
[4] | 李金超, 梅硕, 杜雨佳, 马骉, 李虹. 空气过滤用聚氨酯纳米纤维膜的制备及其性能[J]. 现代纺织技术, 2024, 32(5): 18-22. |
[5] | 齐庆欢, 师晓含, 张 庆, 苑保奎, 周玉嫚. 高导热PVDF/Ag纤维膜的构建及其导热性能[J]. 现代纺织技术, 2024, 32(5): 23-31. |
[6] | 朱雪滢, 邓霁霞, 黄晨. PLCL超细纤维非织造材料的润湿性调控与机理[J]. 现代纺织技术, 2024, 32(4): 1-9. |
[7] | 邢东风, 李雲环, 高宇, 王福兴, 富强, 金达莱. 星型PLLA-PEG嵌段共聚物纤维膜的制备及其亲水性能#br#[J]. 现代纺织技术, 2024, 32(3): 45-52. |
[8] | 王琦, 陈明星, 张威, 吴艳杰, 王新亚. 静电纺Janus纳米纤维膜的研究进展[J]. 现代纺织技术, 2024, 32(10): 1-10. |
[9] | 张亚南, 许冰洁, 李梦玮, 任浩天, 高玉洁, 王懿佳, 吴金丹. 负载聚集诱导发光光敏剂纳米纤维膜的制备及其抗菌性能[J]. 现代纺织技术, 2024, 32(10): 31-39. |
[10] | . GA交联PVA/SA静电纺纳米纤维膜的制备及其湿气发电[J]. 现代纺织技术, 2024, 32(10): 40-47. |
[11] | 朱建政, 崔靖萍, 周岚, 张国庆. 基于静电纺丝双重负载聚苯胺的纳米纤维膜制备及其在废水处理中的应用#br#[J]. 现代纺织技术, 2024, 32(10): 48-55. |
[12] | 刘 舒, 丁新波, 林万里, 仇巧华, 李 雅. 柔性大孔SiO2纳米纤维的制备及水诱导发电性能[J]. 现代纺织技术, 2023, 31(6): 72-79. |
[13] | 俞林双, 金万慧, 周颖, 杨悦悦, 雷彩虹, 朱海霖, 陈建勇. 丝素蛋白/茜草素复合纤维膜的制备及应用[J]. 现代纺织技术, 2023, 31(5): 58-65. |
[14] | 刘延波, 和星雨, 郝 铭, 胡晓东, 杨波. 阵列圆盘式纺丝头结构对电场强度的影响[J]. 现代纺织技术, 2023, 31(5): 142-150. |
[15] | 刘延波, 张天艺, 庞蓉蓉, 陈志军, 杨波. 层压复合防酸织物的制备及其性能[J]. 现代纺织技术, 2023, 31(5): 240-248. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||