[1] WOO H K, ZHOU K, KIM S K, et al. Visibly transparent and infrared reflective coatings for personal thermal management and thermal camouflage[J]. Advanced Functional Materials, 2022, 32(38): 2201432.
[2] ZHANG Q, LV Y, WANG Y, et al. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving[J]. Nature Communications, 2022, 13(1): 4874.
[3]张迅,钟申洁,张佳文, 等.具有日间被动辐射制冷功能的超疏水锦纶6织物的制备及性能研究[J].丝绸, 2022, 59(2): 31-39.
ZHANG Xun, ZHONG Shenjie, ZHANG Jiawen, et al. Preparation and performance of super-hydrophobic nylon-6 fabric with passive daytime radiative cooling function[J]. Journal of Silk, 2022,59(2):31-39.
[4]汪思婧,吴巧英.国内外降温服的研究热点及发展趋势[J].浙江理工大学学报(自然科学),2024,51(3):347-357.
WANG Sijing, WU Qiaoying. Research hotspots and development trends of cooling clothing at home and abroad [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2024, 51(3): 347-357.
[5] MIAO D, CHENG N, WANG X, et al. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling[J]. Nano Letters, 2022, 22(2):680-687.
[6] HU R, LIU Y, SHIN S, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020, 10(17): 1903921.
[7] CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152.
[8] LIANG Z, ZHOU Z, LI J, et al. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk[J]. Chemical Engineering Journal, 2021, 415: 128980.
[9]ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[10] SUN Y, JI Y, JAVED M, et al. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling[J]. Advanced Materials Technologies, 2022, 7(3): 2100803.
[11] MIAO D, WANG X, YU J, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021, 31(14): 2008705.
[12] WANG X, LIU X, LI Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020, 30(5): 1907562.
[13] ZHU J, JIA L, HUANG R. Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(16): 12080-12085.
[14] CHO M, ZHU J, KIM H, et al. Half-pipe palladium nanotube-based hydrogen sensor using a suspended nanofiber scaffold[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13343-13349.
[15] 陈鹤鸣,胡娇,康花,等.聚氨酯/黑种草子伤口敷料的制备与性能表征[J].功能高分子学报,2024,37(2):148-156.
CHEN Heming, HU Jiao, KANG Hua, et al. Preparation and characterization of polyurethane/nigella sativa seed wound dressing[J]. Journal of Functional Polymers, 2024, 37(2): 148-156..
[16] XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44673-44681.
[17] WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020, 211:110525.
[18] JING W, ZHANG S, ZHANG W, et al. Scalable and flexible electrospun film for daytime subambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29558-29566.
[19] LIU X, LI Y, PAN Y, et al. A shish-kebab superstructure film for personal radiative cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17188-17194.
[20] KIM G, PARK K, HWANG K J, et al. Highly sunlight reflective and infrared semi-transparent nanomesh textiles[J]. ACS Nano, 2021, 15(10): 15962-15971.
[21] LI P, WANG A, FAN J, et al. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling[J]. Advanced Functional Materials, 2022, 32(5): 2109542.
[22] LI N, WEI L, YOU M, et al. Hierarchically structural TiO2-PVDF fiber film with particle-enhanced spectral performance for radiative sky cooling[J]. Solar Energy, 2023,259: 41-48.
[23] LI X, XU H, YANG Y, et al. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling[J]. Materials Horizons, 2023, 10(7): 2487-2495.
[24] ATIGANYANUN S, KUMNORKAEW P. Effects of pigment volume concentration on radiative cooling properties of acrylic-based paints with calcium carbonate and hollow silicon dioxide microparticles[J]. International Journal of Sustainable Energy, 2023, 42(1): 612-626.
[25] LI M, YAN Z, FAN D. Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management[J]. ACS Applied Materials & Interfaces, 2023, 15(14): 17848-17857.
|