[1]李圆,于淼.基于深度学习图像处理的服装推荐研究进展[J].毛纺科技,2023,51(12):119-126.
LI Yuan, YU Miao. Research progress of clothing recommendation based on deep learning image processing[J]. Wool Textile Journal, 2023, 51(12):119-126.
[2]王静,王小艺,兰翠芹, 等.服装个性化定制中信息技术的应用与展望[J].丝绸,2024, 61(1):96-108.
WANG Jing, WANG Xiaoyi, LAN Cuiqin, et al.Application and prospect of information technology in personalized clothing customization[J]. Journal of Silk, 2024, 61(1): 96-108.
[3]刘聪,丁贵广.基于视觉的服装属性分类算法[J].微电子学与计算机,2016,33(1):28-33.
LIU Cong, DING Guiguang.Visual-based clothing attribute classification algorithm[J]. Microelectronics & Computer,2016, 33(1):28-33.
[4] CHEN H, GALLAGHER A, GIROD B. Describing Clothing by Semantic Attributes[C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 609-623.
[5] 孙秀秀. 基于深度学习的多标签服装图像分类研究[D]. 北京: 华北电力大学, 2020: 24-26.
SUN Xiuxiu. Research on Multi-Label Clothing Image Classification Based on Deep Learning[D]. Beijing: North China Electric Power University, 2020: 24-26.
[6]刘和娟. 基于深度学习的姐妹装图像检索技术研究[D]. 昆明: 云南大学,2019:23-34.
LIU Hejuan. Research on Sister Outfit Image Retrieval Technology Based on Deep Learning[D]. Kunming: Yunnan University,2019:23-34.
[7]杨小童,陈月明,杨坤.融合多标签特征在心电异常事件分类上的应用[J].计算机仿真,2022,39(8):508-513, 523.
YANG Xiaotong, CHEN Yueming, YANG Kun. Application of multi-label features fusion in ECG anomaly classification[J]. Computer Simulation, 2022, 39(8): 508-513, 523.
[8]雷冬冬,王俊英,董方敏, 等.基于混合域注意力机制的服装关键点定位及属性预测算法[J]. 东华大学学报(自然科学版),2022,48(4):28-35.
LEI Dongdong, WANG Junying, DONG Fangmin,et al. Clothing key points location and attribute prediction algorithm based on mixed domain attention mechanism[J]. Journal of Donghua University(Natural Science),2022,48(4):28-35.
[9] FERREIRA B Q, BAÍA L, FARIA J, et al. A unified model with structured output for fashion images classification[EB/OL]. 2018: 1806.09445.http://arxiv.org/abs/1806.09445v1.
[10] SHAJINI M, RAMANAN A. A knowledge-sharing semi-supervised approach for fashion clothes classification and attribute prediction[J]. The Visual Computer, 2022, 38(11): 3551-3561.
[11] 曹涵颖,妥吉英.基于改进YOLOv5和ResNet50的女装袖型识别方法[J].现代纺织技术,2024,32(1): 45-53.
CAO Hanying, TUO Jiying. A method for identifying women's sleeves based on improved YOLOv5 and ResNet50[J]. Advanced Textile Technology,2024,32(1): 45-53.
[12] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[13] 张钰,刘建伟,左信.多任务学习[J].计算机学报,2020,43(7):1340-1378.
ZHANG Yu, LIU Jianwei, ZUO Xin. Survey of multi-task learning[J]. Chinese Journal of Computers, 2020, 43(7): 1340-1378.
[14] TAN M, LE Q V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]// 36th International Conference on Machine Learning (ICML 2019). Los Angeles: Proceedings of Machine Learning Research, 2019:6105-6114.
[15] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J]. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015:1-14.
[16] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[17] PARK J, WOO S, LEE J Y, et al. BAM:bottleneck attention module[EB/OL]. (2018-07-18)[2024-04-30]. https://arxiv.org/pdf/1807.06514.
[18] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 11531-11539.
|