[1]廖林, 尹伟乐, 叶昱昕. 石墨化温度对人造石墨微观结构及电化学性能的影响[J]. 炭素技术, 2023, 42(1): 46-50.
LIAO Lin, YIN Weile, YE Yuxin. Influence of graphitization temperature on the microstructure and electrochemical properties of artificial graphite[J]. Carbon Techniques, 2023, 42(1): 46-50.
[2]RAVINDRAN P, MANISEKAR K, NARAYANASAMY P, et al. Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J]. Materials & Design, 2012, 39: 42-54.
[3]MOCHANE M J, MOTAUNG T E, MOTLOUNG S V. Morphology, flammability, and properties of graphite reinforced polymer composites. Systematic review[J]. Polymer Composites, 2018, 39(S3): 1487-1499.
[4]XIE F, LI H, LIU X, et al. A comprehensive study on source terms in irradiated graphite spheres of HTR-10[J]. Annals of Nuclear Energy, 2018, 122: 352-365.
[5]江林涛, 朱维东, 唐海龙, 等. 石墨纤维热电偶的性能测试与分析[J]. 贵州科学, 2007, 25(S1): 82-85.
JIANG Lintao, ZHU Weidong, TANG Hailong, et al. Property testing and analysis of graphite fibre thermocouple[J]. Guizhou Science, 2007, 25(S1): 82-85.
[6]潘强, 谷小虎, 林雄超, 等. 煤基石墨烯在锂离子电池中的应用[J]. 洁净煤技术, 2022, 28(6): 82-90.
PAN Qiang, GU Xiaohu, LIN Xiongchao, et al. Application of coal-based graphene for lithium-ion batteries[J]. Clean Coal Technology, 2022, 28(6): 82-90.
[7]KO T H, LIAO Y K, LIU C H. Effects of graphitization of PAN-based carbon fiber cloth on its use as gas diffusion layers in proton exchange membrane fuel cells[J]. New Carbon Materials, 2007, 22(2): 97-101.
[8]WU X, YANG P, GAO P, et al. Effect of graphitization degree of fuel cell gas diffusion layers on their heat management: Modeling and experiments[J]. Journal of Central South University, 2022, 29(1): 80-88.
[9]GOMEZ-MARTIN A, SCHNEPP Z, RAMIREZ-RICO J. Structural evolution in iron-catalyzed graphitization of hard carbons[J]. Chemistry of Materials, 2021, 33(9): 3087-3097.
[10]HUNTER R D, RAMÍREZ-RICO J, SCHNEPP Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons[J]. Journal of Materials Chemistry A, 2022, 10(9): 4489-4516.
[11]徐世海. 碳材料催化石墨化研究[D]. 长沙: 湖南大学, 2010: 1-16.
XU Shihai. Study on Catalytic Graphitization of Carbon Materials[D]. Changsha: Hunan University, 2010: 1-16.
[12]吕博, 周春刚. 锂电池负极石墨化炉技术现状与发展方向[J]. 轻金属, 2022(4): 55-57.
LÜ Bo, ZHOU Chungang. Technical status and development direction of anode material graphitization furnace for lithium battery[J]. Light Metals, 2022(4): 55-57.
[13]刘清钰. 添加剂对石墨性能影响研究[D]. 上海: 华东理工大学, 2021: 12-74.
LIU Qingyu. Study on the Influence of Additives on Graphite Properties[D]. Shanghai: East China University of Science and Technology, 2021: 12-74.
[14]ZHOU H H, PENG Q L, HUANG Z H, et al. Catalytic graphitization of PAN-based carbon fibers with electrodeposited Ni-Fe alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 581-587.
[15]ZHANG F, HE D, GE S, et al. Effect of fiber splitting on the catalytic graphitization of electroless Ni–B-coated polyacrylonitrile-based carbon fibers[J]. Surface and Coatings Technology, 2008, 203(1/2): 99-103.
[16]黄振华. Ni-B合金镀层对碳材料的催化石墨化研究[D]. 长沙: 湖南大学, 2010: 13-25.
HUANG Zhenhua. Study on Catalytic Graphitization of Carbon Materials by Ni-B Alloy Coating[D]. Changsha: Hunan University, 2010: 13-25.
[17]CHEN L, FANG T, SONG C, et al. Boron-catalytic graphitization boosting the production of high-performance carbon paper at a moderate temperature[J]. Advanced Engineering Materials, 2021, 23(10): 2100305..
[18]介亚菲, 华一新, 徐存英, 等. ChCl-urea-NiCl2-FeCl3离子液体电沉积Ni-Fe合金[J]. 材料科学与工程学报, 2016, 34(2): 217-222, 279.
JIE Yafei, HUA Yixin, XU Cunying, et al. Electrodeposition of Ni-Fe alloys in ChCl-urea-NiCl2-FeCl3 ionic liquid[J]. Journal of Materials Science and Engineering, 2016, 34(2): 217-222, 279.
[19]陈志凯, 郭红霞, 王群. Fe-Ni合金电沉积的电化学行为[J]. 功能材料, 2010, 41(9): 1595-1599.
CHEN Zhikai, GUO Hongxia, WANG Qun. Electrochemical behaviors of electrodeposited Fe-Ni alloy[J]. Journal of Functional Materials, 2010, 41(9): 1595-1599.
[20]苑海威. 高铁Ni-Fe合金箔的电沉积工艺[D]. 长沙: 中南大学, 2013: 5-9.
YUAN Haiwei. Electrodeposition Process of High Iron Ni-Fe Alloy Foil[D]. Changsha: Central South University, 2013: 5-9.
[21]方滔. 硼催化石墨化对燃料电池用碳纸结构与性能的影响[D]. 广州: 华南理工大学, 2021: 54-56.
FANG Tao. Effect of Boron-Catalyzed Graphitization on the Structure and Properties of Carbon Paper for Fuel Cells[D]. Guangzhou: South China University of Science and Technology, 2023: 54-56.
[22]CHEN H, YANG J, SHUAI Q, et al. In-situ doping B4C nanoparticles in PAN precursors for preparing high modulus PAN-based carbon fibers with boron catalytic graphitization[J]. Composites Science and Technology, 2020, 200: 108455.
[23]郑雪梅, 李杰平, 付骁, 等. 废旧电池制备氧化石墨烯[J]. 有色金属工程, 2023, 13(8): 1-8.
ZHENG Xuemei, LI Jieping, FU Xiao, et al. Preparation of graphene oxide from waste batteries[J]. Nonferrous Metals Engineering, 2023, 13(8): 1-8.
[24]刘红浩, 曾凡浩, 张福勤. 放电等离子烧结下碳化硼对聚丙烯腈基碳纤维石墨化的影响[J]. 粉末冶金材料科学与工程, 2022, 27(6): 601-609.
LIU Honghao, ZENG Fanhao, ZHANG Fuqin. Effect of boron carbide on graphitization of polyacrylonitrile based carbon fibers during spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6): 601-609.
[25]ZHANG Z, LU J, REN X, et al. Enhancement of the low-temperature catalytic graphitization of polyacrylonitrile by incorporating Cu nanostructures as plasmonic photocatalyst[J]. Journal of Materials Science, 2022, 57(3): 1703-1713.
[26]张文晋. 金属铁、钴、镍和镍铝合金熔化性质的理论研究[D]. 新乡: 河南师范大学, 2014: 71-87.
ZHANG Wenjin. Theoretical Study on Melting Properties of Metallic Iron, Cobalt, Nickel and Nickel-Aluminum Alloy[D]. Xinxiang: Henan Normal University, 2014: 71-87.
[27]陈力, 吕春祥, 蒋俊祺, 等. 聚丙烯腈凝胶纤维渗硼对炭纤维的石墨化过程的影响[J]. 新型炭材料, 2019, 34(1): 95-104.
CHEN Li, LÜ Chunxiang, JIANG Junqi, et al. Influence of boron on the graphitization of carbon fibers prepared by boron-modified polyacrylonitrile gel fibers[J]. New Carbon Materials, 2019, 34(1): 95-104.
|