[1]丁承君, 张思前, 冯玉伯, 等. 面向工业企业的能耗智能监测系统设计[J]. 机械设计与制造, 2023(6): 92-96.
DING Chengjun, ZHANG Siqian, FENG Yubo, et al. Intelligent monitoring system for energy consumption of industrial enterprises based on cloud and fog integration[J]. Machinery Design & Manufacture, 2023(6): 92-96.
[2]陈雪斌, 袁逸萍, 财音宝音, 等. 面向铝箔车间综合能耗预测系统的研发与应用[J]. 制造技术与机床, 2023(9): 80-87.
CHEN Xuebin, YUAN Yiping, CAIYIN Baoyin, et al. Development and application of a comprehensive energy consumption prediction system for aluminum foil workshops[J]. Manufacturing Technology & Machine Tool, 2023(9): 80-87.
[3]焦瑀阳, 李丽, 聂华, 等. 采用OPC统一架构的锻造车间能耗数据采集与监管系统[J]. 中国机械工程, 2021, 32(20): 2492-2500.
JIAO Yuyang, LI Li, NIE Hua, et al. Energy consumption data collection and supervision systems of forging workshops with OPC unified architecture[J]. China Mechanical Engineering, 2021, 32(20): 2492-2500.
[4]张琦, 刘帅, 徐化岩, 等. 钢铁企业智慧能源管控系统开发与实践[J]. 钢铁, 2019, 54(10): 125-133.
ZHANG Qi, LIU Shuai, XU Huayan, et al. Development and practice of smart energy management and control system in iron and steel works[J]. Iron & Steel, 2019, 54(10): 125-133.
[5]童世华. 车间能耗实时监测系统的研究与设计[J]. 机床与液压, 2017, 45(20): 146-149.
TONG Shihua. Research and design of real time monitoring system of energy consumption in workshop[J]. Machine Tool & Hydraulics, 2017, 45(20): 146-149.
[6]王中锋. 基于内存计算的纺织生产设备电能耗分析方法[J]. 毛纺科技, 2017, 45(3): 56-61.
WANG Zhongfeng. Analysis method of electrical energy consumption of production equipment in textile enterprise based on memory computing technology[J]. Wool Textile Journal, 2017, 45(3): 56-61.
[7]陆应康, 盛步云, 张志瀚, 等. 基于时序分解与CNN的车间能耗预测方法[J]. 计算机应用与软件, 2021, 38(6): 339-344.
LU Yingkang, SHENG Buyun, ZHANG Zhihan, et al. Workshop energy consumption prediction method based on time series decomposition and cnn[J]. Computer Applications and Software, 2021, 38(6): 339-344.
[8]刘涵,林家泉.基于IPSO-AM-LSTM的飞机地面空调能耗预测[J/OL].北京航空航天大学学报.
LIU Han, LIN Jiaquan. Energy consumption prediction of aircraft ground air conditioning based on IPSO-AM-LSTM[J/OL]. Journal of Beijing University of Aeronautics and Astronautics.
[9]秦耀凯, 陶涛, 陈星艳, 等. 基于WOA-BP神经网络的板式定制家具车间电力预测模型[J]. 林产工业, 2023, 60(12): 50-56.
QIN Yaokai, TAO Tao, CHEN Xingyan, et al. WOA-BP neural network-based power prediction model for panelized custom furniture workshops[J]. China Forest Products Industry, 2023, 60(12): 50-56.
[10]徐岩, 向益锋, 马天祥. 基于粒子群算法优化参数的VMD-GRU短期电力负荷预测模型[J]. 华北电力大学学报(自然科学版), 2023, 50(1): 38-47.
XU Yan, XIANG Yifeng, MA Tianxiang. VMD-GRU short-term power load forecasting model based on optimized parameters of partical swarm algorithm[J]. Journal of North China Electric Power University (Natural Science Edition), 2023, 50(1): 38-47.
[11]孙宁可, 王艳, 纪志成. 基于经验模态分解-粒子群优化-长短期记忆的车间电力能耗预测方法[J]. 南京理工大学学报, 2023, 47(2): 238-244.
SUN Ningke, WANG Yan, JI Zhicheng. Prediction method of power consumption in workshop based on EMD-PSO-LSTM[J]. Journal of Nanjing University of Science and Technology, 2023, 47(2): 238-244.
[12]DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[13]王秋莲, 欧桂雄, 徐雪娇, 等. 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35(6): 1052-1063.
WANG Qiulian, OU Guixiong, XU Xuejiao, et al. Research on CNC milling machine cutting power prediction model considering tool wear based on VMD-SSA-LSTM[J]. China Mechanical Engineering, 2024, 35(6): 1052-1063.
[14]李飞宏, 肖迎群. 基于VMD-GRU-EC的短期电力负荷预测方法[J]. 中国测试, 2023, 49(10): 120-127.
LI Feihong, XIAO Yingqun. Short-term power load forecasting method based on VMD-GRU-EC[J]. China Measurement & Test, 2023, 49(10): 120-127.
[15]阳曾, 丁施尹, 叶萌, 等. 基于变分模态分解和深度学习的短期电力负荷预测模型[J]. 电测与仪表, 2023, 60(2): 126-131.
YANG Zeng, DING Shiyin, YE Meng, et al. Short-term load forecasting model based on VMD and LSTM[J]. Electrical Measurement & Instrumentation, 2023, 60(2): 126-131.
|