[1]TEODORO K, SANFELICE R, Migliorini F, et al. A review on the role and performance of cellulose nanomaterials in sensors[J]. ACS Sensors, 2021, 6(7): 2473-2496.
[2]SINGH H, BAMRAH A, BHARDWAJ S K, et al. Nanomaterial-based fluorescent sensors for the detection of lead ions[J]. Journal of Hazardous Materials, 2021, 407: 124379.
[3]ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14): 4834-4842.
[4]YANG C, CHEN C C, PAN Y Y, et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta, 2015, 182: 264-271.
[5]ZHANG M F, ZHAO X, ZHANG G H, et al. Electrospinning design of functional nanostructures for biosensor applications[J]. Journal of Materials Chemistry B, 2017, 5(9): 1699-1711.
[6]UZUN S D, KAYACI F, UYAR T, et al. Bioactive surface design based on functional composite electrospun nanofibers for biomolecule immobilization and biosensor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5235-5243.
[7]SU Z Q, DING J W, WEI G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications[J]. RSC Advances, 2014, 4(94): 52598-52610.
[8]PRAKASH M D, VANJARI S R K, SHARMA C S, et al. Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers[J]. Sensors, 2016, 16(9): 1354.
[9]SAETIA K, SCHNORR J M, MANNARINO M M, et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications[J]. Advanced Functional Materials, 2014, 24(4): 492-502.
[10]OUYANG Z F, LI J F, WANG J H, et al. Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles[J]. Journal of Materials Chemistry B, 2013, 1(18): 2415-2424.
|