摘要: 智能湿热管理织物因其能够调节人体与外界的热湿交换,提高穿着舒适度而备受关注。通过改变织物的微观结构和材料分布,非对称设计可实现对湿热传递的定向控制,达到智能调节人体热湿微环境的效果,不仅拓宽了智能湿热管理织物的研发路径,也为提升服装功能性和舒适性提供新的解决方案。文章介绍了非对称设计的基本概念、原理和制备方法,探讨了其在湿热管理织物中的独特优势。此外,还对智能湿热管理织物存在的问题进行了分析,提出了相应的解决方案,并展望了非对称智能湿热管理织物的未来发展方向和应用前景。
中图分类号:
苏娟, 杨 群, 张 宁a, 李睿淼a, 周思羽a, 王际平. 非对称设计在智能湿热管理织物中的应用研究进展 [J]. 现代纺织技术.
"[1] 陈雪, 于利静, 张昭华. 个体冷热调节服装的研究进展[J]. 现代纺织技术, 2024, 32 (9): 28-37. CHEN X, YU L J, ZHANG Z H. Review of personal cold and heat regulating clothing[J]. Advanced Textile Technology, 2024, 32 (9) : 28-37. [2] 项舒琪, 卢业虎. 新型热防护材料研究进展[J]. 丝绸, 2024, 61 (2): 95-105. XIANG S Q, LU Y H. Research progress on novel thermal protection materials[J]. Journal of Silk, 2024, 61 (2): 95-105. [3] ZHANG X, WANG F, GUO H, et al. Advanced cooling textiles: Mechanisms, applications, and perspectives[J]. Advanced Science, 2024, 11(10): 2305228. [4] ULLAH H M K, LEJEUNE J, CAYLA A, et al. A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure[J]. Textile Research Journal, 2022, 92(17-18): 3351-3386. [5] 田源, 杜赵群, 郑冬明, 等. 织物风格与热湿舒适性综合评价系统设计[J]. 现代纺织技术, 2024, 32 (4): 68-75. TIAN Y, DU Z Q, ZHENG D M, et al. Development of fabric style and thermal-moisture comprehensive evaluation system[J]. Advanced Textile Technology, 2024, 32 (4) : 68-75. [6] ZHOU J, ZHAO J, GUO X, et al. Personal wearable thermal and moisture management clothing: a review on its recent trends and performance evaluation methods[J]. Processes, 2023, 11(11): 3063. [7] 韩梦瑶,任松,葛灿,等. 用于个人热管理的被动调温服装材料研究进展 [J]. 现代纺织技术, 2023, 31(1): 92-103. HAN M Y, REN S, GE C, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management[J]. Advanced Textile Technology, 2023, 31(1): 92-103. [8] CHO I, LEE K W. Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene[J]. Journal of Applied Polymer Science, 1985, 30(5): 1903-1926. [9] AGRAWAL G, AGRAWAL R. Janus nanoparticles: recent advances in their interfacial and biomedical applications[J]. ACS Applied Nano Materials, 2019, 2(4): 1738-1757. [10] CHENG Q, LI M, ZHENG Y, et al. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf[J]. Soft Matter, 2011, 7(13): 5948-5951. [11] WALTHER A, MÜLLER A H. Janus particles: Synthesis, self-assembly, physical properties, and applications[J]. Chemical Reviews, 2013, 113(7): 5194-5261. [12] 陆毅. 不对称润湿性Janus膜的研究进展[J]. 安徽化工, 2021, 47(4): 4-7. LU Y. Research progress of asymmetric wettability Janus membrane[J]. Anhui Chemical Industry, 2021, 47(4): 4-7. [13] 张兴振, 靳健, 朱玉长. 非对称浸润性Janus膜的制备及应用进展[J]. 膜科学与技术, 2023, 43(3): 148-157. ZHANG X Z, JIN J, ZHU Y C. Preparation and application of Janus membranes with asymmetric wettability[J]. Membrane Science and Technology, 2023, 43(3): 148-157. [14] SI Y, CHEN L, YANG F, et al. Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport[J]. Journal of Colloid and Interface Science, 2018, 509: 346-352. [15] YANG H C, HOU J, CHEN V, et al. Janus membranes: Exploring duality for advanced separation[J]. Angewandte Chemie (International Ed), 2016, 55(43): 13398-13407. [16] ZHENG Y, BAI H, HUANG Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. [17] JU J, BAI H, ZHENG Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. [18] 高党鸽, 常瑞, 吕斌, 等. Janus纳米材料可控制备的研究进展[J]. 高分子材料科学与工程, 2019, 35(1): 168-175. GAO D G, CHANG R, LÜ B, et al. Progress on controllable preparation of Janus nanomaterials[J]. Polymer Materials Science & Engineering, 2019, 35(1): 168-175. [19] DUAN Y, ZHAO X, SUN M, et al. Research advances in the synthesis, application, assembly, and calculation of Janus materials[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1071-1095. [20] YANG H C, ZHONG W, HOU J, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. Journal of Membrane Science, 2017, 523: 1-7. [21] PANWAR K, JASSAL M, AGRAWAL A K. Readily dispersible antimicrobial Ag–SiO2 Janus particles and their application on cellulosic fabric [J]. Carbohydrate Polymers, 2018, 187: 43-50. [22] SÖZ Ç K, TROSIEN S, BIESALSKI M. Superhydrophobic hybrid paper sheets with Janus-type wettability[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37478-37488. [23] GUPTA P, KANDASUBRAMANIAN B. Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19102-19113. [24] WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999. [25] GONG X, DING M, GAO P, et al. High-performance liquid-repellent and thermal-wet comfortable membranes using triboelectric nanostructured nanofiber/meshes[J]. Advanced Materials, 2023, 35(51): e2305606. [26] 涂林, 鲍利红. 静电纺丝聚氨酯纳米纤维的应用研究进展[J]. 聚氨酯工业, 2021, 36(3): 8-10. TU L, BAO L H. Advances in the applied research of electrospinning polyurethane nanofibers[J]. Polyurethane Industry, 2021, 36(3): 8-10. [27] YAO C, LUO M, WANG H, et al. Asymmetric wetting Janus fabrics with double-woven structure for oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5942-5951. [28] 单明景, 安春耕. Janus织物的结构设计及其单向导湿性能[J]. 天津工业大学学报, 2024, 43(2): 36-42. SHAN M J, AN C G. Structural design of Janus fabric and its unidirectional moisture conductivity[J]. Journal of Tiangong University, 2024, 43 (2): 36-42. [29] 罗玫因, 蔡再生. 二重组织混合特殊浸润性织物用于单向导湿的研究[J]. 产业用纺织品, 2020, 38(12): 9-15. LUO M Y, CAI Z S. Study on the application of mixed special wettability fabrics based on backed weave in single-side moisture transportion[J]. Technical Textiles, 2020, 38(12): 9-15. [30] 李书华, 张松楠, 张治斌, 等. Janus亲/疏复合材料的制备及研究进展[J]. 高分子材料科学与工程, 2022, 38(2): 174-182. LI S H, ZHANG S N, ZHANG Z B, et al. Fabrication and research progress of Janus hydrophilic-hydrophobic composites[J]. Polymer Materials Science & Engineering, 2022, 38(2): 174-182. [31] WANG H, ZHOU H, YANG W, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880. [32] WANG Y, LIANG X, ZHU H, et al. Reversible water transportation diode: temperature-adaptive smart Janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020, 30(6): 1907851. [33] TIAN X, JIN H, SAINIO J, et al. Droplet and fluid gating by biomimetic Janus membranes[J]. Advanced Functional Materials, 2014, 24(38): 6023-6028. [34] WANG L, XI G H, WAN S J, et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate[J]. Cellulose, 2014, 21(4): 2983-2994. [35] LIU Y, XIN J H, CHOI C H. Cotton fabrics with single-faced superhydrophobicity[J]. Langmuir, 2012, 28(50): 17426-17434. [36] HAN D, XIAO P, GU J, et al. Polymer brush functionalized Janus graphene oxide/chitosan hybrid membranes[J]. RSC Advances, 2014, 4(43): 22759-22762. [37] TANG L, WANG L, YANG X, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications[J]. Progress in Materials Science, 2021, 115: 100702. [38] HOFFMAN A S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation[J]. Advanced Drug Delivery Reviews, 2013, 65(1): 10-16. [39] 王蕊, 韩倩倩, 王春仁. 温度敏感性生物材料研究进展[J]. 中国药事, 2019, 33(10): 1167-1173. WANG R, HAN Q Q, WANG C R. On research progress of thermo-sensitive biomaterials[J]. Chinese Pharmaceutical Affairs, 2019, 33(10): 1167-1173. [40] BÜTÜN V, ARMES S P, BILLINGHAM N C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer, 2001, 42(14): 5993-6008. [41] IYER A K, SINGH A, GANTA S, et al. Role of integrated cancer nanomedicine in overcoming drug resistance[J]. Advanced Drug Delivery Reviews, 2013, 65(13/14): 1784-1802. [42] TAN J, YANG Q, HU G, et al. Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics[J]. Polymer Testing, 2022, 110: 107563. [43] 王勃翔, 刘丽, 路艳华, 等. 互穿聚合物网络温敏凝胶对棉织物液态水分传递的影响[J]. 纺织学报, 2018, 39(11): 79-84. WANG B X, LIU L, LU Y H, et al. Influence of interpenetrating polymer networks thermosensitive gel on liquid moisture transfer of cotton fabric[J]. Journal of Textile Research, 2018, 39(11): 79-84. [44] 孙潇, 代向慧, 许晓敏, 等. PLA表面温敏性互穿网络水凝胶的UV接枝及其透湿性[J]. 印染, 2021, 47(4): 16-21. SUN X, DAI X H, XU X M, et al. Photo-grafting of thermosensitive interpenetrating polymer network hydrogel on the surface of polylactic acid fabric and its moisture permeability[J]. China Dyeing & Finishing, 2021, 47(4): 16-21. [45] TAKEI Y G, AOKI T, SANUI K, et al. Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces[J]. Macromolecules, 1994, 27(21): 6163-6166. [46] 李佳, 王勃翔, 霍雨心, 等. 纳米改性制备温敏响应性柞蚕丝织物[J]. 丝绸, 2022, 59(10): 20-26. LI J, WANG B X, HUO Y X, et al. Thermo-responsive tussah silk fabric modified with nanotechnology[J]. Journal of Silk, 2022, 59(10): 20-26. [47] 王玉双, 周丽婷, 张德锁. 温敏超支化聚合物的制备及其对真丝织物的改性研究[J]. 现代丝绸科学与技术, 2024, 39(2): 1-5. WANG Y S, ZHOU L T, ZHANG D S. Preparation of temperature-sensitive hyperbranched polymers and its modification of silk fabrics[J]. Modern Silk Science & Technology, 2024, 39(2): 1-5. [48] 刘璨, 吴小玲, 柯雪, 等. LCST型智能聚合物及其在生物医学领域的研究进展[J]. 武汉工程大学学报, 2021, 43(1): 50-58. LIU C, WU X L, KE X, et al. Progress in LCST smart polymers and their applications in biomedical field[J]. Journal of Wuhan Institute of Technology, 2021, 43(1): 50-58. [49] LI J, MA Q, XU Y, et al. Highly bidirectional bendable actuator engineered by LCST-UCST bilayer hydrogel with enhanced interface[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55290-55298. [50] QIU H L, YAGN Q, TAO S X, et al. Asymmetrical surface-modified polyester/cotton fabrics for temperature-adaptive moisture and thermal management of human body [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2024, 701: 134934. [51] 仇慧丽, 杨群, 陶思轩, 等. 智能导湿涤棉织物的制备及温敏湿热管理行为[J]. 印染, 2024, 50(7): 11-15. QIU H L, YANG Q, TAO S X, et al. Preparation and temperature-sensitive humidity management of intelligent moisture permeable polyester/cotton fabric[J]. China Dyeing & Finishing, 2024, 50(7): 11-15. [52] GUO Y, SHEN J, LI M, et al. Effects of nonionic surfactant and salts on the interactions between oppositely charged star-shaped copolymer and ionic surfactant in aqueous solutions[J]. Journal of Molecular Liquids, 2018, 266: 789-796. [53] WANG Y C, DAI Z W, XUE Y. Synthesis and characterization of temperature-sensitive TSPU/PNIPAAm semi-IPN polymer[J]. Advanced Materials Research, 2012, 399: 359-362. [54] NAN Y, ZHAO C, BEAUDOIN G, et al. Synergistic approaches in the design and applications of UCST polymers[J]. Macromolecular Rapid Communications, 2023, 44(23): e2300261. [55] DONG Y, KONG J, PHUA S L, et al. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14087-14095. [56] MIAO D, HUANG Z, WANG X, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018, 14(32): e1801527. [57] AHMED BABAR A, ZHAO X, WANG X, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216. [58] DAI B, LI K, SHI L, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019, 31(41): e1904113. [59] FAN C, ZHANG Y, LONG Z, et al. Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability[J]. Advanced Functional Materials, 2023. 33 (29): 2300794." |
[1] | 翟若彤, 石婷婷, 宋海波, 卢业虎, 殷兰君. 冬季暖气房环境下被子睡眠舒适性能分析[J]. 现代纺织技术, 2024, 32(9): 83-90. |
[2] | 张露杨, 宋海波, 孟晶, 石婷婷, 卢业虎. 不同使用环境下被服系统的动态热湿舒适性[J]. 现代纺织技术, 2024, 32(5): 97-104. |
[3] | 刘晓涵, 王宇轩, 谢 雯, 张红霞. 抗菌热湿舒适复合功能服用面料的性能[J]. 现代纺织技术, 2024, 32(4): 52-59. |
[4] | 田 源, 杜赵群, 郑冬明, 邹昊宸. 织物风格与热湿舒适性综合评价系统设计[J]. 现代纺织技术, 2024, 32(4): 68-75. |
[5] | 任佳园, 金剑, 郑晶晶. 基于脑电图技术的消防体能训练服热湿舒适性评价[J]. 现代纺织技术, 2024, 32(1): 108-118. |
[6] | 薛萧昱, 何佳臻, 王敏. 三维虚拟试衣技术在服装设计与性能评价中的应用进展[J]. 现代纺织技术, 2023, 31(2): 12-. |
[7] | 胡蝶飞, 王琰, 姚菊明, 夏新兴, 张国庆. 纸纱∕再生涤复合纱及其针织面料的性能[J]. 现代纺织技术, 2023, 31(2): 152-. |
[8] | 党天华, 赵蒙蒙, 钱静. 基于微型风扇阵列的通风服研发与测评[J]. 现代纺织技术, 2022, 30(4): 214-221. |
[9] | 李龙飞, 邵灵达, 林平, 祝成炎, 丁圆圆, 田伟. 日常防护型口罩结构分析及性能研究[J]. 现代纺织技术, 2022, 30(1): 178-184. |
[10] | 周倩雯, 何佳臻, 路紫荆, 卢业虎. 多季节适用型环卫服的研发与性能评价[J]. 现代纺织技术, 2022, 30(1): 185-193. |
[11] | 田金钰, 屠晔. 基于3种骑行姿势下虚拟压力的骑行服上衣样板优化方法[J]. 现代纺织技术, 2022, 30(1): 212-223. |
[12] | 于倩倩,陈慰来,王金凤. Dralon超细腈纶纤维运动面料开发与防水整理研究[J]. 现代纺织技术, 2021, 29(6): 72-77. |
[13] | 崔妞妞,张彩玉,李家炜,顾健军,戚栋明,厉巽巽,陈玉霜. 温度响应涂层棉织物的制备及其可逆润湿性能研究[J]. 现代纺织技术, 2021, 29(3): 84-88. |
[14] | 韩华伟,杨允出,刘莹,董佳宁,盛玥曦. 汗湿条件下幼儿睡衣面料层间水传递性能研究[J]. 现代纺织技术, 2020, 28(6): 36-40. |
[15] | 沈奕君,张海棠,嵇岑. 基于压力舒适性的双肩包结构优化研究[J]. 现代纺织技术, 2020, 28(6): 67-71. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||