摘要: 有效的需求预测可以帮助服装企业精准把握市场动态及消费者需求,优化产品研发与库存管理,降低运营风险,进而促进服装行业的持续与健康发展。为揭示国内外服装需求预测领域的研究焦点,基于Web of Science核心数据库和中国知网数据库,选取近二十年的服装需求预测文献,并运用文献计量软件CiteSpace,从关键词聚类、趋势演化和突变词等方面进行描述统计并绘制知识图谱。结果表明:该领域主要涵盖产品研发与流行预测、供应链管理与需求预测、品牌服装与销售预测、消费心理与行为预测4个方面,研究方法已由传统统计分析向基于机器学习和深度学习的智能预测转变。未来研究将深入挖掘跨平台、多模态的市场信息、供应链数据及消费行为,以实现更为智能化、个性化与精确化的服装需求预测。
中图分类号:
陈秋含, 梅晶晶, 沈欣悦. "国内外服装需求预测研究综述与展望——基于CiteSpace的可视化分析" [J]. 现代纺织技术.
"[1] ANITHA S, NEELAKANDAN R. A demand forecasting model leveraging machine learning to decode customer preferences for new fashion products[J]. Complexity, 2024, 2024(1): 8425058. [2] SWAMINATHAN K, VENKITASUBRAMONY R. Demand forecasting for fashion products: A systematic review[J]. International Journal of Forecasting, 2024, 40(1): 247-267. [3]刘丽娴, 王贺林, 郑泽宇, 等. 基于大数据技术的服装智能制造创新模式[J]. 针织工业, 2024 (2): 49-54. LIU L X, WANG H L, ZHENG Z Y, et al. Innovative mode of fashion intelligent manufacturing based on big data technology[J]. Knitting Industries, 2024 (2): 49-54. [4] THEODORIDIS G, TSADIRAS A. Retail demand forecasting: A multivariate approach and comparison of boosting and deep learning methods[J]. International Journal on Artificial Intelligence Tools, 2024, 33(4): 2450001. [5]郑金峰, 罗戎蕾. 服装销售定量预测方法研究进展[J]. 现代纺织技术, 2022, 30(2): 27-35. ZHENG J F, LUO R L. Research progress on quantitative forecast methods of clothing sales[J]. Advanced Textile Technology, 2022, 30(2): 27-35. [6]陈悦, 陈超美, 胡志刚, 等. 引文空间分析原理与应用: CiteSpace实用指南[M]. 北京: 科学出版社, 2014. CHEN Y, CHEN C M, HU Z G, et al. Principles and applications of analyzing a citation space[M]. Beijing: Science Press, 2014. [7]叶克林, 张和安. 入世后我国纺织服装企业的发展前景与对策[J]. 现代经济探讨, 2001(12): 8-12. YE K L, ZHANG H A. The development outlook and countermeasures of China's textile and clothing enterprises after entering WTO[J]. Modern Economic Research, 2001(12): 8-12. [8]张辉. 新中国成立70年来中国产业结构演变趋势研究[J]. 新视野, 2019(4): 5-14. ZHANG H. The evolution of China's industrial structure in the 70 years since the founding of the PRC[J]. Expanding Horizons, 2019(4): 5-14. [9]纪峰. 供给侧结构性改革视角下传统制造业现状与转型对策研究[J]. 经济体制改革, 2017(3): 196-200. JI F. Study on the current situation and countermeasures of the transformation of traditional manufacturing industry from the perspective of supply-side structural reform[J]. Reform of Economic System, 2017(3): 196-200. [10]戴奇乐, 郭金阳, 高阳, 等. 人工智能研究的热点、演进脉络与未来展望: 基于文献计量的分析[J]. 价格理论与实践, 2024(10): 221-225. DAI Q L, GUO J Y, GAO Y, et al. Research hotspots, evolutionary trajectory, and future prospects of artificial intelligence: Based on bibliometric analysis[J]. Price: Theory & Practice, 2024(10): 221-225. [11] TSAO Y C, LIU Y H, VU T L, et al. Intelligent design suggestion and sales forecasting for new products in the apparel industry[J]. Fibres & Textiles in Eastern Europe, 2023, 31(6): 30-38. [12]余顺坤, 侯咏, 张哲人, 等. “十五五” 时期世界经济增长态势分析[J]. 宏观经济研究, 2024(4): 4-21. YU S K, HOU Y, ZHANG Z R, et al. An analysis of the growth trend of the world economy during the ‘15th Five-Year Plan'[J]. Macroeconomics, 2024(4): 4-21. [13] DING Y, MA Y, LIAO L, et al. Leveraging multiple relations for fashion trend forecasting based on social media[J]. IEEE Transactions on Multimedia, 2021, 24: 2287-2299. [14]冯英杰, 蒋高明, 彭佳佳. 人工智能引领纺织行业创新发展[J]. 现代纺织技术, 2021, 29(3): 71-77. FENG Y J, JIANG G M, PENG J J. Innovation and development of textile industry under guidance of artificial intelligence[J]. Advanced Textile Technology, 2021, 29(3): 71-77. [15]江莎莉. 基于数据挖掘的服装流行色预测[J]. 现代电子技术, 2018, 41(3): 92-95. JIANG S L. Clothing fashion color prediction based on data mining[J]. Modern Electronics Technique, 2018, 41(3): 92-95. [16]孟志青, 许微微. 时态文本数据流特征流行趋势模型及算法[J]. 计算机科学, 2019, 46(S1): 417-422. MENG Z Q, XU W W. Trend model and algorithm of temporal text data stream characteristics[J]. Computer Science, 2019, 46(S1): 417-422. [17]李建中, 张灏, 杨培源. 服装流行色预测的调研要点[J]. 纺织学报, 2011, 32(1): 100-104. LI J Z, ZHANG H, YANG P Y. Key points of investigation for forecasting fashion color[J]. Journal of Textile Research, 2011, 32(1): 100-104. [18]周捷,李健.服装流行色变化趋势及突变分析[J].丝绸,2019,56(6):58-67. ZHOU J, LI J. Changing trend and abrupt change analysis of fashion color[J]. Journal of Silk, 2019, 56(6): 58-67. [19]项杨雪, 陈雪颂, 陈劲. 服装流行趋势预测网络技术演进路径: 基于科学计量学的分析[J]. 图书情报工作, 2016, 60(S2): 119-126. XIANG Y X, CHEN X S, CHEN J. The evolution path of fashion trend prediction network technology: Based on the analysis of scientometrics[J]. Library and Information Service, 2016, 60(S2): 119-126. [20]施聪聪, 胡觉亮, 韩曙光. 品牌服装双营销渠道竞争与合作模型构建及应用[J]. 纺织学报, 2017, 38(5): 157-162. SHI C C, HU J L, HAN S G. Competition and cooperation model construction and application in dual marketing channel for brand apparel[J]. Journal of Textile Research, 2017, 38(5): 157-162. [21]胡海清, Tadikamalla Pandu. 考虑预测准确性的快时尚产品两阶段订货策略研究[J]. 中国管理科学, 2023, 31(7): 256-265. HU H Q, TADIKAMALLA P D. Two-stage inventory model considering forecast accuracy of online fast fashion products[J]. Chinese Journal of Management Science, 2023, 31(7): 256-265. [22] ZHOU X, MENG J, WANG G, et al. A demand forecasting model based on the improved Bass model for fast fashion clothing[J]. International Journal of Clothing Science and Technology, 2020, 33(1): 106-121. [23]张雷. 预售模式下时尚服装双渠道供应链优化模型[J]. 纺织学报, 2016, 37(5): 160-166. ZHANG L. Optimization model of fashionable apparel dual-channel supply chain network based on presale mode[J]. Journal of Textile Research, 2016, 37(5): 160-166. [24] V D R G Jr., LUK N V W. Managing product returns for remanufacturing[J]. Production and Operations Management, 2001, 10(2): 142-155. [25]何海洪, 余军合, 许立波, 等. 基于可拓聚类的服装需求预测方法[J].计算机应用与软件, 2018, 35(5): 273-281. HE H H, YU J H, XU L B, et al. Clothing demand forecasting method based on extension clustering[J]. Computer Applications and Software, 2018, 35(5): 273-281. [26]张秀美, 孙永剑, 郭亮伟. 面向大批量定制的基于改进的LS-SVM服装需求预测模型[J]. 纺织学报, 2010, 31(5): 141-145. ZHANG X M, SUN Y J, GUO L W. Forecasting model for apparel demand based on improved least squares support vector machine (LS-SVM)oriented to mass customization[J]. Journal of Textile Research, 2010, 31(5): 141-145. [27]陈银光, 于守健. 基于改进加权移动平均法的服装销售预测[J]. 智能计算机与应用, 2018, 8(6): 54-56. CHEN Y G, YU S J. Clothing sales forecast based on improved weighted moving average method[J]. Intelligent Computer and Applications, 2018, 8(6): 54-56. [28] THOMASSEY S. Sales forecasts in clothing industry: The key success factor of the supply chain management[J]. International Journal of Production Economics, 2010, 128(2): 470-483. [29]池可, 陈雁. 基于对象信息的服装销售预测方法选择[J]. 纺织学报, 2009, 30(10): 139-142. CHI K, CHEN Y. Forecast method for garment sales based on object information[J]. Journal of Textile Research, 2009, 30(10): 139-142. [30]宋宪捷, 周建军, 鹿士凯, 等. 基于客流量的贝叶斯回归服装销售预测方法[J]. 丝绸, 2018, 55(4): 44-48. SONG X J, ZHOU J J, LU S K, et, al. Clothing sales forecast based on passenger flow and Bayesian regression model[J]. Journal of Silk, 2018, 55(4): 44-48 [31]王昕彤, 王秀敏, 郭瑞良, 等. 基于灰色理论的服装企业销售预测模型[J]. 丝绸, 2020, 57(2): 55-60. WANG X T, WANG X M, GUO R L, et al. Sales prediction model of clothing enterprises based on grey theory[J]. Journal of Silk, 2020, 57(2): 55-60. [32] REN S, PATRICK HUI C L, JASON CHOI T M. AI-based fashion sales forecasting methods in big data era[M]//Artificial intelligence for fashion industry in the big data era. Singapore: Springer Singapore, 2018: 9-26. [33]罗戎蕾, 刘绍华, 苏晨. 基于遗传算法的BP神经网络服装销售预测方法[J]. 北京邮电大学学报, 2014, 37(4): 39-43. LUO R L, LIU S H, SU C. Garment sales forecast method based on genetic algorithm and BP neural network[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4): 39-43. [34] MIAO M, GO I, CUI L, et al. How brand loyalty and its marketing activities affect Japanese fashion companies' financial performance[J]. Journal of Fashion Marketing and Management, 2024, 28(5): 1034-1052. [35] ZHANG B, TSENG M L, QI L, et al. A comparative online sales forecasting analysis: Data mining techniques[J]. Computers & Industrial Engineering, 2023, 176: 108935. [36] CAGLAYAN N, SATOGLU S I, KAPUKAYA E N. Sales forecasting by artificial neural networks for the apparel retail chain stores[C]// Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making. Cham: Springer International Publishing, 2020: 451-456. [37] LIU Y, JU W, ZHAO J, et al. Product life cycle based demand forecasting by using artificial bee colony algorithm optimized two-stage polynomial fitting[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(2): 825-836. [38] FU Y, FISHER M. The value of social media data in fashion forecasting[J]. Manufacturing & Service Operations Management, 2023, 25(3): 1136-1154. [39] SUNDARARAMAN B, RAMALINGAM N. Using consumer preference data in forecasting demand in apparel retailing[J]. Journal of Fashion Marketing and Management, 2024, 28(2): 316-333. [40] CHEN I F, LU C J. Demand forecasting for multichannel fashion retailers by integrating clustering and machine learning algorithms[J]. Processes, 2021, 9(9): 1578. [41] LI X, SHEN J, WANG D, et al. Multi-modal transform-based fusion model for new product sales forecasting[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108606. [42] OH J. Classification and regression tree approach for the prediction of the seasonal apparel market: Focused on weather factors[J]. Journal of Fashion Marketing and Management, 2024, 28(5): 893-910. [43] LIU P, MING W, HU B. Sales forecasting in rapid market changes using a minimum description length neural network[J]. Neural Computing and Applications, 2021, 33(3): 937-948. [44] ZAFAR F, SARWAR A. Influence of fashion blogs on technology-driven behaviour of millennial[J]. International Journal of Fashion Design, Technology and Education, 2021, 14(3): 366-374. [45] HAN J, WOODSIDE A G, KO E. Does consumer knowledge about sustainable-fashion impact intention-to-buy?[J]. Asia Pacific Journal of Marketing and Logistics, 2024, 36(10): 2390-2410. [46] RŪTELIONĖ A, BHUTTO M Y. Exploring the psychological benefits of green apparel and its influence on attitude, intention and behavior among Generation Z: a serial multiple mediation study applying the stimulus–organism–response model[J]. Journal of Fashion Marketing and Management, 2024, 28(5): 1074-1092. [47]黄满盈, 邓晓虹. 中国纺织服装业转型升级驱动因素: 基于上市公司的季度面板数据分析[J]. 技术经济与管理研究, 2018(9): 118-123. HUANG M Y, DENG X H. Empirical analysis on the driving factors of China's textile and garment industry transformation and upgrading: Based on quarterly panel data analysis of listed companies[J]. Journal of Technical Economics & Management, 2018(9): 118-123. [48]刘众. 工业互联网赋能传统产业数字化转型的市场化逻辑与实现路径: 以纺织服装产业为例[J]. 科技管理研究, 2023, 43(8): 144-150. LIU Z. Marketization logic and realization path of industrial internet empowering the digital transformation of traditional industries: Taking the textile and garment industry as example[J]. Science and Technology Management Research, 2023, 43(8): 144-150. [49] Acquila-Natale E, Iglesias-Pradas S. A matter of value? Predicting channel preference and multichannel behaviors in retail[J]. Technological Forecasting and Social Change, 2021, 162: 120401. [50] HANELT A, BOHNSACK R, MARZ D, et al. A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change[J]. Journal of Management Studies, 2021, 58(5): 1159-1197. [51]李建琴, 童文庆, 周恒. 数字化转型对纺织业升级的影响研究[J]. 丝绸, 2024, 61(1): 1-10. LI J Q, TONG W Q, ZHOU H. Research on the influence of digital transformation on the textile industrial upgrading[J]. Journal of Silk, 2024, 61(1): 1-10. [52]戴魁早, 黄姿, 梁银笛. 数智技术、技术要素市场与服务型制造[J/OL]. 中国工业经济, 2025, (1): 137-155. [2025-02-09]. https://doi.org/ 10.19581/j.cnki.ciejournal. 2025. 01. 008. DAI K Z, HUANG Z, LIANG Y D. Digital intelligence technology, technical factor market and service-oriented manufacturing[J/OL]. China Industrial Economics, 2025, (1): 137-155. [2025-02-09]. https://doi.org/10.19581/ j.cnki.ciejournal. 2025. 01. 008. [53] BELLAR O, BAINA A, BALLAFKIH M. Sentiment analysis: Predicting product reviews for E-commerce recommendations using deep learning and transformers[J]. Mathematics, 2024, 12(15): 2403. [54] SKENDERI G, JOPPI C, DENITTO M, et, al. Well googled is half done: Multimodal forecasting of new fashion product sales with image-based google trends[J]. Journal of Forecasting, 2024, 43(6): 1982-1997. [55] BOONE T, GANESHAN R, JAIN A, et al. Forecasting sales in the supply chain: Consumer analytics in the big data era[J]. International journal of forecasting, 2019, 35(1): 170-180. [56] MUSALEM A, OLIVARES M, SCHILKRUT A. Retail in high definition: Monitoring customer assistance through video analytics[J]. Manufacturing & Service Operations Management, 2020, 23(5): 1025-1042. [57] LIU R, JOSEPH A A, XIN M, et al. Personalized clothing prediction algorithm based on multi-modal feature fusion[J]. International Journal of Engineering and Technology Innovation, 2024, 14(2): 216-230." |
[1] | 郭晓芳, 张惟实, 张瑞霞. 基于CiteSpace的蒙古族服饰研究进展的可视化分析[J]. 现代纺织技术, 2024, 32(5): 84-96. |
[2] | 向丰萍, 万雅涵, 刘安定. 基于CiteSpace的彝族服饰研究趋势的可视化分析[J]. 现代纺织技术, 2024, 32(12): 90-100. |
[3] | 张超宇, 肖雨嫣, 任泽华, 王兵心, 刘建立. 基于CiteSpace的近十年国内棉纺织加工研究热点可视化分析[J]. 现代纺织技术, 2022, 30(6): 8-15. |
[4] | 王鹏飞, 程华. 基于知识图谱的国内智能纺织品技术融合动态演化及创新前沿[J]. 现代纺织技术, 2022, 30(6): 16-27. |
[5] | 王鹏飞, 程华. 基于文献计量的国际纺织行业科技创新知识图谱研究[J]. 现代纺织技术, 2022, 30(5): 259-272. |
[6] | 刘亚琼, 李楠, 李雯, 王利君. 服装结构设计对电磁屏蔽效能的影响[J]. 现代纺织技术, 2022, 30(4): 193-199. |
[7] | 李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展[J]. 现代纺织技术, 2022, 30(1): 18-25. |
[8] | 丰翔, 王晓蓬, 邱笑笑, 王来力. 基于CiteSpace的纺织服装足迹类文献计量分析[J]. 现代纺织技术, 2022, 30(1): 9-17. |
[9] | 余月琳,顾学锋,吴乐元,陈慰来. 添纱衬垫织物平方米质量研究及预测模型构建[J]. 现代纺织技术, 2021, 29(6): 78-83. |
[10] | 李勇,刘文亮,魏鹏辉,吴炜,陈晓川. 不同拓扑结构原棉品质指标预测模型的预测效果对比[J]. 现代纺织技术, 2018, 26(1): 49-54. |
[11] | 方虹,邱弢,冯岑. 基于Eviews软件的全棉斜纹布价格指数的建模预测[J]. 现代纺织技术, 2015, 23(2): 31-35. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||