[1] FU R, LI B, GAO Y, et al. Visualizing and analyzing convolution neural networks with gradient information[J]. Neurocomputing, 2018, 293: 12-17. [2] 盖荣丽,蔡建荣,王诗宇,等.卷积神经网络在图像识别中的应用研究综述[J].小型微型计算机系统,2021,42(9):1980-1984. GAI Rongli, CAI Jianrong, WANG Shiyu, et al. Research review on image recognition based on deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(9):1980-1984. [3] 张振焕,周彩兰,梁媛.基于残差的优化卷积神经网络服装分类算法[J].计算机工程与科学,2018,40(2):354-360. ZHANG Zhenhuan, ZHOU Cailan, LIANG Yuan. An optimized clothing classification algorithm based on residual convolutional neural network[J]. Computer Engineering & Science, 2018, 40(2): 354-360. [4] 厉智,孙玉宝,王枫,等.基于深度卷积神经网络的服装图像分类检索算法[J].计算机工程,2016,42(11):309-315. LI Zhi, SUN Yubao, WANG Feng, et al. Clothing image classification and retrieval algorithm based on deep convolutional neural network[J]. Computer Engineering, 2016, 42(11): 309-315. [5] ZHE X, CHEN S, YAN H. Directional statistics-based deep metric learning for image classification and retrieval[J]. Pattern Recognition, 2019, 93(9):113-123. [6] 汤清云.基于深度学习特征提取的服装图像检索[D].武汉:华中科技大学,2019. TANG Qingyun. Clothing Image Retrieval Basedon Deep Learning for Extract Feature[D]. Wuhan: Huazhong University of Science and Technology, 2019. [7] 于雨桐.基于多特征融合的服装图像款式识别的研究与应用[D].北京:北京工业大学,2016. YU Yutong. The Research and Application on Clothing Style Image Recognition Based on Multi-Feature Fusion[D]. Beijing: Beijing University of Technology, 2016. [8] 胡梦莹,钟跃崎.少样本学习下的服装风格分析与评价[J].毛纺科技,2021,49(4):13-17. HU Mengying, ZHONG Yueqi. Fashion style analysis and evaluation based on few-shot learning[J]. Wool Textile Journal, 2021, 49(4): 13-17. [9] LÜ N, YAN H, ZHU S, et al. Clothing images attributes classification based on deep neural network[C]//International Conference on Smart Internet of Things (SmartIoT). Tianjing: IEEE, 2019:1187-1193. [10] LIU Z, LUO P, QIU S, et al. DeepFashion: Powering robust clothes recognition and retrieval with rich annotations[C]//Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016:96-1104. [11] MEDNIKOV Y, NEHEMIA S, ZHENG B, et al. Transfer representation learning using inception-v3 for the detection of masses in mammography[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, Hawaii: IEEE, 2018:2587-2590. [12] 蔡汉明,刘明.基于Inceptionv3模型的金属板材表面缺陷检测系统[J].轻工机械,2020,163(1):76-79. CAI Hanming, LIU Ming. Surface defect inspection equipment for sheet metal based on inception-V3 model[J]. Light Industry Machinery, 2020, 38(1): 71-74. [13] 谢小红,陆建波,李文韬,等.基于迁移学习的服装图像分类模型研究[J].计算机应用与软件,2020,37(9):94-99. XIE Xiaohong, LU Jianbo, LI Wentao, et al. Classification model of clothing image based on migration learning[J]. Computer Applications and Software, 2020, 37(9):88-93 [14] 康庄,杨杰,郭濠奇.基于机器视觉的垃圾自动分类系统设计[J].浙江大学学报(工学版),2020,54(7):1272-1280. KANG Zhuang, YANG Jie, GUO Haoqi. Automatic garbage classification system based on machine vision[J]. Journal of Zhejiang University: Engineering Edition, 2020(7): 1272-1280, 1307. [15] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016:2818-2826. [16] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39. ZHUANG Fuzhen, LUO Ping, HE Qing,et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39. |