[1] DAI W F, YANG Y T, YANG Y M, et al. Material advancement in tissue-engineered nerve conduit[J]. Nanotechnology Reviews, 2021,10(1): 488-503. [2] IM J H, LEE J Y, YEON W H, et al. The anatomy of the saphenous and sural nerves as a source of processed nerve allografts[J]. Cell and Tissue Banking, 2020,21(3): 547-555. [3] MEENA P, KAKKAR A, KUMAR M, et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair[J]. Cell and Tissue Research, 2020, 383(2): 617-644. [4] GU X S, DING F, WILLIAMS D F. Neural tissue engineering options for peripheral nerve regeneration[J]. Biomaterials, 2014,35(24): 6143-6156. [5] ZHANG R C, DU W Q, ZHANG J Y, et al. Mesenchymal stem cell treatment for peripheral nerve injury: A narrative review[J]. Neural Regeneration Research, 2021,16(11): 2170-2176. [6] ZARRINTAJ P, ZANGENE E, MANOUCHEHRI S, et al. Conductive biomaterials as nerve conduits: Recent advances and future challenges[J]. Applied Materials Today, 2020,20: 100784. [7] YU L M Y, LEIPZIG N D, SHOICHET M S. Promoting neuron adhesion and growth[J]. Materials Today, 2008,11(5): 36-43. [8] DONG C J, QIAO F Y, HOU W S, et al. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation[J]. Applied Materials Today, 2020,21: 100870. [9] TESSA G, W E A. Strategies to promote peripheral nerve regeneration: Electrical stimulation and/or exercise[J]. The European Journal of Neuroscience, 2016,43(3): 336-350. [10] PARK S, LIU C Y, WARD P J, et al. Effects of repeated 20-Hz electrical stimulation on functional recovery following peripheral nerve injury[J]. Neurorehabilitation and Neural Repair, 2019,33(9): 775-784. [11] ANDERSON M, SHELKE N B, MANOUKIAN O S, et al. Peripheral nerve regeneration strategies: Electrically stimulating polymer based nerve growth conduits[J]. Critical Reviews in Biomedical Engineering, 2016,43(2/3): 131-159. [12] 焦海山,肖波,刘晓梅.术中低频电刺激对周围神经再生的影响[J].神经解剖学杂志,2013,29(4):475-478. JIAO Haishan, XIAO Bo, LIU Xiaomei. Effects of low frequency electrical stimulation on peripheral nerve regeneration[J]. Journal of neuroanatomy, 2013,29(4): 475-478. [13] MAR F M, BONNI A, SOUSA M M. Cell intrinsic control of axon regeneration[J]. EMBO Reports, 2014,15(3): 254-263. [14] MCGREGOR C E, ENGLISH A W. The Role of BDNF in peripheral nerve regeneration: Activity-dependent treatments and Val66Met[J]. Frontiers in Cellular Neuroscience, 2018,12: 00522. [15] ZHAO Y H, LIANG Y Y, DING S P, et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering[J]. Biomaterials, 2020,255: 120164. [16] ZHU W, YE T, LEE S J, et al. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14(7):2485-2494. [17] PIRES F, FERREIRA Q, RODRIGUES C A V, et al. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering[J]. Biochimica et Biophysica Acta, 2015,1850(6): 1158-1168. [18] XU H X, HOLZWARTH J M, YAN Y H, et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration[J]. Biomaterials, 2014,35(1): 225-235. [19] ZHOU Z F, ZHANG F, WANG J G, et al. Electrospinning of PELA/PPY fibrous conduits: Promoting peripheral nerve regeneration in rats by self-originated electrical stimulation[J]. ACS Biomaterials Science & Engineering, 2016,2(9): 1572-1581. [20] DAS S, SHARMA D, SAHARIA M, et al. Electrospun silk-polyaniline conduits for functional nerve regeneration in rat sciatic nerve injury model[J]. Biomedical Materials (Bristol, England), 2017,12(4): 045025. [21] WANG G W, WU W F, YANG H, et al. Intact polyaniline coating as a conductive guidance is beneficial to repairing sciatic nerve injury[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020,108(1): 128-142. [22] GUO B L, SUN Y, FINNE-WISTRAND A, et al. Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration[J]. Acta Biomaterialia, 2012,8(1): 144-153. [23] WANG S P, GUAN S, LI W F, et al. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering[J]. Materials Science and Engineering: C, 2018,93: 890-901. [24] ZHANG D T, YAO Y J, DUAN Y Y, et al. Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly(d,l-lactide-co-caprolactone) conduits promote peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020,12(7): 7915-7930. [25] QIAN Y, SONG J L, ZHAO X T, et al. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis[J]. Advanced Science, 2018,5(4): 1700499. [26] WANG J, CHENG Y, CHEN L, et al. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration[J]. Acta Biomaterialia, 2019,84: 98-113. [27] SAEED F, MAJID S, MOHAMMAD T S, et al. A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: An in vitro and in vivo study[J]. Progress in Biomaterials, 2019,8(4): 239-248. [28] JAHROMI H K, FARZIN A, HASANZADEH E, et al. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat[J]. Materials Science & Engineering C, 2020,109: 110564. [29] KABIRI M, ORAEE-YAZDANI S, SHAFIEE A, et al. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats[J]. Journal of Biomedical Science, 2015,22(1): 1-11. [30] ATEH D D, NAVSARIA H A, VADGAMA P. Polypyrrole-based conducting polymers and interactions with biological tissues[J]. Journal of The Royal Society Interface, 2006,3(11): 741-752. [31] SHI G X, ROUABHIA M, WANG Z X, et al. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide[J]. Biomaterials, 2004,25(13): 2477-2488. [32] WILLIAMS R L, DOHERTY P J. A preliminary assessment of poly(pyrrole) in nerve guide studies[J]. Journal of Materials Science: Materials in Medicine, 1994,5(6/7): 429-433. [33] WANG X D, GU X S, YUAN C W, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo[J]. Journal of Biomedical Materials Research. Part A, 2004,68(3): 411-422. [34] LALEH G, P P M, MOHAMMAD M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2011,5(4): E17-E35. [35] STEJSKAL J, HAJNÁ M, KAPÁRKOVÁ V, et al. Purification of a conducting polymer, polyaniline, for biomedical applications[J]. Synthetic Metals, 2014,195: 286-293. [36] ELENA Y, ALEXANDER V, YULIA M, et al. Tetramer of aniline as a structural analog of polyaniline: Promising material for biomedical application[J]. Synthetic Metals, 2021,274: 116712. [37] DELL VALLE L J, ARADILLA D, OLIVER R, et al. Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): Benefits in the electroactivity of the conducting polymer[J]. European Polymer Journal, 2007,43(6): 2342-2349. [38] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: Past, present and future[J]. Progress in Materials Science, 2011,56(8): 1178-1271. [39] BEI H P, YANG Y H, ZHANG Q, et al. Graphene-Based nanocomposites for neural tissue engineering[J]. Molecules (Basel, Switzerland), 2019,24(4): 658. [40] HONG S W, LEE J H, KANG S H, et al. Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates[J]. BioMed Research International, 2014 (1): 212149. [41] ZHOU R H, GAO H J. Cytotoxicity of graphene: recent advances and future perspective[J]. Wiley Interdisciplinary ReviewsNanomedicine and Nanobiotech-nology, 2014,6(5): 452-474. [42] SERPELL C J, KOSTARELOS K, DAVIS B G. Can carbon nanotubes deliver on their promise in biology? Harnessing unique properties for unparalleled applications[J]. ACS Central Science, 2016,2(4): 190-200. [43] REDONDO-GÓMEZ C, LEANDRO-MORA R,BLANCH-BERMU'DEZ D, et al. Recent advances in carbon nanotubes for nervous tissue regeneration[J]. Advancesin Polymer Technology, 2020 (2): 6861205. [44] YU W W, JIANG X Q, CAI M, et al. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration[J]. Nanotechnology, 2014,25(16): 165102. [45] VIJAYAVENKATARAMAN S, KANNAN S, CAO T, et al. 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair[J]. Frontiers in Bioengineering and Biotechnology, 2019,7: 266. [46] VIJAYAVENKATARAMAN S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods[J]. Acta Biomaterialia, 2020,106: 54-69. [47] ZHANG M, LI C, ZHOU L P, et al. Polymer scaffolds for biomedical applications in peripheral nerve reconstruction[J]. Molecules (Basel, Switzerland), 2021,26(9): 2712. [48] PRABHAKARAN M P, GHASEMI-MOBARAKEH L, JIN G R, et al. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells[J]. Journal of Bioscience and Bioengineering, 2011,112(5): 501-507. [49] HUANG Y L, WU W B, LIU H F, et al. 3D printing of functional nerve guide conduits[J]. Burns & Trauma, 2021,9: tkab011. [50] VIJAYAVENKATARAMAN S, THAHARAH S, ZHANG S, et al. 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair[J]. Artificial Organs, 2019,43(5):515-523. [51] 钱垒,兰红波,赵佳伟,等.电场驱动喷射沉积3D打印[J].中国科学:技术科学,2018,48(7):773-782. QIAN Lei, LAN Hongbo, ZHAO Jiawei, et al. Electric field driven jet deposition 3D printing[J]. Chinese Journal of science and technology, 2018,48 (7): 773-782. [52] SUN M Z, MCGOWAN M, KINGHAM P J, et al. Novel thin-walled nerve conduit with microgrooved surface patterns for enhanced peripheral nerve repair[J]. Journal of Materials Science: Materials in Medicine, 2010,21(10): 2765-2774. [53] DU J, CHEN H W, QING L M, et al. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration[J]. Biomaterials Science, 2018,6(6): 1299-1311. [54] DONG H, JONES W E. Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006,22(26): 11384-11387. [55] SUN B B, ZHOU Z F, LI D W, et al. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2019,94: 190-199. [56] ACQUA L D, TONIN C, VARESANO A, et al. Vapour phase polymerisation of pyrrole on cellulose-based textile substrates[J]. Synthetic Metals, 2005,156(5): 379-386. |