[1] FISHER R A, GOLLAN B, HELAINE S. Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464. [2] KAYE K S, POGUE J M. Infections caused by resistant gram-negative bacteria: Epidemiology and management[J]. Pharmacotherapy, 2015, 35(10): 949-962. [3] ZHU Y, XU C, ZHANG N, et al. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-Infective therapy[J]. Advanced Functional Materials, 2018, 28(14): 1706709. [4] GUPTA A, MUMTAZ S, LI C H, et al. Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chemical Society Reviews, 2019, 48(2): 415-427. [5] SAIDIN S, JUMAT M A, MOHD AMIN N A A, et al. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application[J]. Materials Science and Engineering: C, 2021, 118: 111382. [6] AMBIKA S, SUNDRARAJAN M. Antibacterial behaviour of vitex negundo extract assisted ZnO nano-particles against pathogenic bacteria[J]. Journal of Photochemistry and Photobiology B, 2015, 146: 52-57. [7] ZHU P, WENG Z, LI X, et al. Biomedical applications of functionalized ZnO nanomaterials: From biosensors to bioimaging[J]. Advanced Materials Interfaces, 2016, 3(1): 1500494. [8] SVETLICHNYI V, SHABALINA A, LAPIN I, et al. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity[J]. Applied Surface Science, 2016, 372: 20-29. [9] BELLANGER X, BILLARD P, SCHNEIDER R, et al. Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria[J]. Journal of Hazardous Materials, 2015, 283: 110-116. [10] KONONENKO V, REPAR N, MARUIČN, et al. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters[J]. Toxicology in Vitro, 2017, 40: 256-263. [11] HACKENBERG S, SCHERZED A, TECHNAU A, et al. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro[J]. Toxicology in Vitro, 2011, 25(3): 657-663. [12] XI J, WEI G, AN L, et al. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy[J]. Nano Letters, 2019, 19(11): 7645-7654. [13] VINCENT M, DUVAL R E, HARTEMANN P, et al. Contact killing and antimicrobial properties of copper[J]. Journal of Applied Microbiology, 2018, 124(5): 1032-1046. [14] HANS M, MATHEWS S, MUCKLICH F, et al. Physicochemical properties of copper important for its antibacterial activity and development of a unified model[J]. Biointerphases, 2015, 11(1): 018902. [15] USMAN M S, SHAMELI K, ZAINUDDIN N, et al. Synthesis, characterization, and antimicrobial properties of copper nanoparticles[J]. International Journal of Nanomedicine, 2013, 8: 4467-4478. [16] CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13): 135101. [17] WANG L, HU C, SHAO L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future[J]. International Journal of Nanomedicine, 2017, 12: 1227-1249. [18] NARADALA J, ALLAM A, TUMU V R, et al. Antibacte-rial activity of copper nanoparticles synthesized by bambusa arundinacea leaves extract[J]. Biointerface Research in Applied Chemistry, 2022, 12(1): 1230-1236. [19] PIMPLISKAR P V, MOTEKAR S C, UMARJI G G, et al. Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study[J]. Photochemistry and Photobiology Science, 2019, 18(6): 1503-1511. [20] 占美清,顾楠楠,吕汪洋,等.不同形貌的ZnO的制备及其可见光催化降解性能研究[J].浙江理工大学学报(自然科学版),2014,31(2):154-159. ZHAN Meiqing, GU Nannan, LÜ Wangyang, et al. Preparation of different morphologies ZnO and study on catalytic degradation performance under visible light[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2014, 31(2): 154-159. [21] WANG P, YANG L, LI J, et al. Zn/ZnO heterostructure for the application of MO degradation and NO removal[J]. Catalysis Letters, 2020, 150(7): 1985-1992. [22] RAMESH S, VETRIVEL S, SURESH P, et al. Characte-rization techniques for nano particles: A practical top down approach to synthesize copper nano particles from copper chips and determination of its effect on planes[J]. Materials Today: Proceedings, 2020, 33: 2626-2630. [23] DEVARAJ M, SARAVANAN R, DEIVASIGAMANI R, et al. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol[J]. Journal of Molecular Liquids, 2016, 221: 930-941. [24] SARAVANAN R, THIRUMAL E, GUPTA V K, et al. The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures[J]. Journal of Molecular Liquids, 2013, 177: 394-401. [25] HE M, LU L, ZHANG J, et al. Facile preparation of L-ascorbic acid-stabilized copper-chitosan nanocomposites with high stability and antimicrobial properties[J]. Science Bulletin, 2015, 60(2): 227-234. [26] WANG X, LU W, ZHAO Z, et al. In situ stable growth of β-FeOOH on g-C3N4 for deep oxidation of emerging contaminants by photocatalytic activation of peroxymono-sulfate under solar irradiation[J]. Chemical Engineering Journal, 2020, 400: 125872. [27] GU Y, XU T, ZHU Z, et al. Atomic-scale tailoring and molecular-level tracking of oxygen-containing tungsten single-atom catalysts with enhanced singlet oxygen generation[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37142-37151. [28] DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymo-nosulfate[J]. Chemical Engineering Journal, 2019, 357: 198-208. |