[1] KUMAR P, DRUCKMAN A, GALLAGHER J, et al. The nexus between air pollution, green infrastructure and human health[J]. Environment International, 2019, 133: 105181. [2] SCHRAUFNAGEL D E, BALMES J R, COWL C T, et al. Air pollution and noncommunicable diseases: A review by the forum of international respiratory societies' environmental committee, part 1: the damaging effects of air pollution[J]. Chest, 2019, 155(2): 409-416. [3] SCHRAUFNAGEL D E. The health effects of ultrafine particles[J]. Experimental & Molecular Medicine, 2020, 52(3): 311-317. [4] FAN S J, HEINRICH J, BLOOM M S, et al. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019[J]. Science of the Total Environment, 2020, 701: 134721. [5] 武松梅,袁传刚.非织造材料孔径与过滤性能关系的研究[J].产业用纺织品,2010,28(1):12-14. WU Songmei, YUAN Chuangang. Study on the relationship between pore size and filtration performance of nonwoven materials[J]. Technical Textiles, 2010, 28(1): 12-14. [6] 陈婷婷,肖云莹,汪贝贝,等.聚苯乙烯超细纤维空气过滤膜的结构与性能研究[J].现代纺织技术,2020,28(5):1-7. CHEN Tingting, XIAO Yunying, WANG Beibei, et al. Study on the structure and properties of polystyrene microfiber air filtration membrane[J]. Advanced Textile Technology, 2020, 28(5): 1-7. [7] YIN L, HU M, LI D, et al. Multifunctional ZIF-67@SiO2 membrane for high eʩciency removal of particulate matter and toxic gases[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17876-17884. [8] ZHANG Y, YUAN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. [9] CHEN Y, CHEN F, ZHANG S, et al. Facile fabrication of multifunctional metal-organic framework hollow tubes to trap pollutants[J]. Journal of the American Chemical Society, 2017, 139(46): 16482-16485. [10] ZHU Q, TANG X, FENG S, et al. ZIF-8@SiO2 composite nanoʩber membrane with bioinspired spider web-like structure for eʩcient air pollution control[J]. Journal of Membrane Science, 2019, 581: 252-261. [11] YE B, WANG R, WANG S, et al. Metal-organic framework-based nanoʩber ʩlters for eʩective indoor air quality control[J]. Journal of Materials Chemistry A, 2018, 6(32): 15807-15814. [12] CHEN Y, ZHANG S, WANG B, et al. Roll-to-Roll production of metal-organic framework coatings for particulate matter removal[J]. Advanced Materials, 2017, 29(15): 1606221. [13] XU X, JI D, ZHANG Y, et al. Detection of phenylketonuria markers using a ZIF-67 encapsulated PtPd alloy nanoparticle(PtPd@ZIF-67)-based disposable electrochemical microsensor[J]. Acs Applied Materials & interfaces, 2019, 11(23): 20734-20742. [14] 仲龙刚,王騊,王晟.类蛛网纤维膜的制备及捕获PM污染物研究[J].现代纺织技术,2019,27(4):1-7. ZHONG Longgang, WANG Tao, WANG Sheng. Preparation of arachnoid fibrous membranes and their capture of PM pollutants[J]. Advanced Textile Technology, 2019, 27(4): 1-7. [15] 刁红敏,任素贞.沸石咪唑酯骨架结构材料合成及性能研究进展[J].化工进展,2010,29(9):1658-1665. DIAO Hongmin, REN Suzhen. Research progress on synthesis and properties of zeolitic imidazolate framework materials[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1658-1665. [16] LI P, YANG X, SONG X, et al. Zirconium-based metal-organic framework particle films for visible-light-driven efficient photoreduction of CO2[J]. ACS Sustaninable Chemistry & Engineering, 2021, 9(5): 2319-2325. [17] ZHU L, WEN Z, MEI W, et al. Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties[J]. Journal of Physical Chemistry C, 2013, 117(40): 20465-20473. [18] LIANG Y, WEI J, HU Y, et al. Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles[J]. Nanoscale, 2017, 9(16): 5323-5328. [19] 杨清香,陈从涛,赵翠真,等.类沸石咪唑酯骨架材料ZIF-67对重金属离子镉、铜和铅的吸附性能研究[J].功能材料,2020,51(2):2072-2077. YANG Qingxiang, CHEN Congtao, ZHAO Cuizhen, et al. Removal of heavy metal ion from water by zeolite imidazolate skeleton (ZIF-67)[J]. Jorunal of Functional Materials, 2020, 51(2): 2072-2077. [20] LI T, CEN X, REN H. Zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8730-8739. [21] HAN X, NAEHER L. A review of traffic-related air pollution exposure assessment studies in the developing world[J]. Environment International, 2006, 32(1): 106-120. [22] CHENG Y, ZHENG G, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Science Advances, 2016, 2(12): e1601530. [23] HANG T, ZHANG W, YE H. Y, et al. Metal-organic complex ferroelectrics[J]. Chemical Society Reviews, 2011, 40(7): 3577-3598. [24] BORENSTEIN A, FLEKER O, LUSKI S, et al. Metal-organic complexes as redox candidates for carbon based pseudo-capacitors[J]. Journal of Materials Chemistry A, 2014, 2(42): 18132-18139. [25] HU M, YIN L, LOW N, et al. Zeolitic-imidazolate-framework filled hierarchical porous nanoʩber membrane for air cleaning[J]. Journal of Membrane Science, 2020, 594: 117467. [26] PAN W, WANG J, SUN X, et al. Ultra uniform metal-organic framework-5 loading along electrospun chitosan/polyethylene oxide membrane fibers for efficient PM2.5 removal[J]. Journal of Cleaner Production, 2021, 291: 125270. [27] DAI X, LI X, WANG X. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chemical Engineering Journal, 2018, 338: 82-91. |