[1] CASTANO L M, FLATAU A B. Smart fabric sensors and e-textile technologies: A review[J]. Smart Materials and Structures, 2014, 23(5): 053001. [2] PENG L H, SU B, YU A B, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(11): 6415-6448. [3] 陈东义.智能织物与服装:人类的“第二层肌肤”[J].设计,2016(24):72-75. CHEN Dongyi. Intelligent abric and clothing: Human's "second skin"[J]. Design, 2016(24): 72-75. [4] WENG W, CHEN P N, HE S S, et al. Smart electronic textiles[J]. Angewandte Chemie, 2016, 55(21): 6140-6169. [5] ZHANG Y, WANG H M, LU H J, et al. Electronic fibers and textiles: Recent progress and perspective[J]. iScience, 2021, 24(7): 102716. [6] CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low: Dimensional materials[J]. Advanced Functional Materials, 2019, 29(25): 1807398. [7] WENG W, YANG J J, ZHANG Y, et al. A route toward smart system integration: From fiber design to device con-struction[J]. Advanced Materials, 2020, 32(5): e1902301. [8] 贺瑛,王进美,金光.柔性传感器在智能纺织品上的应用[J].合成纤维,2022,51(4):21-25. HE Ying, WANG Jinmei, JIN Guang. Application of flexible sensor in intelligent textile[J]. Synthetic Fiber in China, 222,51(4):21-25. [9] WU C X, KIM T W, GUO T L, et al. Wearable ultra-lightweight solar textiles based on transparent electronic fabrics[J]. Nano Energy, 2017, 32: 367-373. [10] YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device[J]. ACS Nano, 2019, 13(3): 3141-3150. [11] GHAHREMANI HONARVAR M, LATIFI M. Overview of wearable electronics and smart textiles[J]. Journal of the Textile Institute, 2016, 108(4): 631-652. [12] LEE H N, GLASPER M J, LI X D, et al. Preparation of fabric strain sensor based on graphene for human motion monitoring[J]. Journal of Materials Science, 2018, 53(12): 9026-9033. [13] CLEVENGER M, KIM H, SONG H W, et al. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition[J]. Science Advances, 2021, 7(42): e8958. [14] ZHU M J, WANG H M, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021, 10(17): 2100646. [15] XIA S, SONG S X, GAO G H. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824. [16] DI X, MA Q Y, XU Y, et al. High-performance ionic conductive poly (vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy[J]. Materials Chemistry Frontiers, 2021, 5(1): 315-323. [17] 许慧,陈晨,周美玲,等.碳纳米管基柔性针织物应变传感器的制备及性能[J].印染,2022,48(8):1-5. XU Hui, CHEN Chen, ZHOU Meiling, et al. Fabrication and properties of flexible knitted fabric strain sensor based on carbon nanotube [J]. China Dyeing & Finishing,2022,48(8):1-5. [18] LIM S J, BAE J H, HAN J H, et al. Foldable and washable fully textile-based pressure sensor[J]. Smart Materials and Structures, 2020, 29(5): 055010. [19] KHALILI N, ASIF H, NAGUIB H E. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties[J]. Smart Materials and Structures, 2018, 27(5): 055002. [20] 刘旭华,苗锦雷,范强,等.Ag NWs/MXene柔性织物应变传感器的制备及性能研究[J].传感技术学报,2022,35(3):306-310. LIU Xuhua, MIAO Jinlei, FAN Qiang, et al. Preparation and properties of Ag NWs/MXene flexible fabric strain sensor[J]. Chinese Journal of Sensors and Actuators, 222,35(3):306-310. [21] FAN W J, HE Q, MENG K Y, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020, 6(11): e2840. [22] MA L Y, WU R H, PATIL A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring[J]. Advanced Functional Materials, 2019, 29(43): 1904549. [23] CHEN M M, CHENG S B, JI K L, et al. Construction of a flexible electrochemiluminescence platform for sweat detection[J]. Chemical Science, 2019, 10(25): 6295-6303. [24] LI R F, QI H, MA Y, et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring[J]. Nature Communications, 2020, 11: 3207. [25] REID D O, SMITH R E, GARCIA-TORRES J, et al. Solvent treatment of wet-spun PEDOT:PSS fibers for fiber-based wearable pH sensing[J]. Sensors, 2019, 19(19): 4213. [26] YOON J, SIM M, OH T S, et al. Flexible electrochemical sensor based on NiCu(OOH) for monitoring urea in human sweat[J]. Journal of the Electrochemical Society, 2021, 168(11): 117510. [27] SINGH A, SHARMA A, AHMED A, et al. Highly selective and efficient electrochemical sensing of ascorbic acid via CuO/rGO nanocomposites deposited on conductive fabric[J]. Applied Physics A, 2022, 128(4): 262. [28] LIU X Y, LILLEHOJ P B. Embroidered electrochemical sensors for biomolecular detection[J]. Lab on a Chip, 2016, 16(11): 2093-2098. [29] SU P G, CHANG C F. Fabrication and electrical and humidity-sensing properties of a flexible and stretchable textile humidity sensor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 36-43. [30] LEE S W, LEE W, KIM I, et al. Bio-inspired electronic textile yarn-based NO2 sensor using amyloid-graphene composite[J]. ACS Sensors, 2021, 6(3): 777-785. [31] ZHU J X, CHO M, LI Y T, et al. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application[J]. Nano Energy, 2021, 86: 106035. [32] HAMILTON B, BILBAO S. Time-domain modeling of wave-based room acoustics including viscothermal and relaxation effects in air[J]. JASA Express Letters, 2021, 1(9): 092401. [33] YAPICI M K, ALKHIDIR T E. Intelligent medical garments with graphene-functionalized smart-cloth ECG sensors[J]. Sensors, 2017, 17(4): 875. [34] JIN H, MATSUHISA N, LEE S, et al. Enhancing the performance of stretchable conductors for e-extiles by controlled ink permeation[J]. Advanced Materials, 2017, 29(21): 1605848. [35] BIHAR E, ROBERTS T, ZHANG Y, et al. Fully printed all-polymer tattoo/textile electronics for electromyography[J]. Flexible and Printed Electronics, 2018, 3(3): 034004. [36] LA T G, QIU S, SCOTT D K, et al. Two-layered and stretchable e-textile patches for wearable healthcare electronics[J]. Advanced Healthcare Materials, 2018, 7(22): e1801033. [37] SHU L, XU T Y, XU X M. Multilayer sweat-absorbable textile electrode for EEG measurement in forehead site[J]. IEEE Sensors Journal, 2019, 19(15): 5995-6005. [38] JAMALI V, NIROUI F, TAYLOR L W, et al. Perovskite-carbon nanotube light-emitting fibers[J]. Nano Letters, 2020, 20(5): 3178-3184. [39] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245. [40] ZHANG Z T, GUO K P, LI Y M, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell[J]. Nature Photonics, 2015, 9(4): 233-238. [41] LANZ T, SANDSTRÖM A, TANG S, et al. A light-emission textile device: Conformal spray-sintering of a woven fabric electrode[J]. Flexible and Printed Electronics, 2016, 1(2): 025004. [42] CHOI S, JO W, JEON Y, et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays[J]. Npj Flexible Electronics, 2020, 4: 33. [43] SHA W, HUA Q L, WANG J W, et al. Enhanced photoluminescence of flexible InGan/Gan multiple quantum wells on fabric by piezo-phototronic effect[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3000-3007. [44] WU Y Y, MECHAEL S S, LERMA C, et al. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns[J]. Matter, 2020, 2(4): 882-895. [45] DE ROSSI D, CARPI F, GALANTINI F. Functional materials for wearable sensing, actuating and energy harvesting[M]// Advances in Science and Technology. Stafa: Trans Tech Publications Ltd., 2008: 247-256. [46] LIU P, GAO Z, XU L M, et al. Polymer solar cell textiles with interlaced cathode and anode fibers[J]. Journal of Materials Chemistry A, 2018, 6(41): 19947-19953. [47] CHENG R W, DONG K, LIU L X, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications[J]. ACS Nano, 2020, 14(11): 15853-15863. [48] WU Q, HU J L. A novel design for a wearable thermoelectric generator based on 3D fabric structure[J]. Smart Materials and Structures, 2017, 26(4): 045037. [49] LIMA N, BAPTISTA A C, Faustino B, et al. Carbon threads sweat-based supercapacitors for electronic textiles[J]. Scientific Reports, 2020, 10: 7703. [50] XIAO X, XIAO X, ZHOU Y H, et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles[J]. Science Advances, 2021, 7(49): el3742. [51] WANG X D, SONG J H, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105. [52] SONG L X, WANG T W, JING W R, et al. High flexibility and electrocatalytic activity MoS2/TiC/carbon nanofibrous film for flexible dye-sensitized solar cell based photovoltaic textile[J]. Materials Research Bulletin, 2019, 118: 110522. [53] HUANG T, ZHANG J, YU B, et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power[J]. Nano Energy, 2019, 58: 375-383. [54] KIM C S, LEE G S, CHOI H, et al. Structural design of a flexible thermoelectric power generator for wearable applications[J]. Applied Energy, 2018, 214: 131-138. [55] SUN Z Y, FENG L L, WEN X, et al. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts[J]. Materials Horizons, 2021, 8(8): 2303-2309. [56] LEE J, AN G. Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance[J]. Applied Surface Science, 2021, 539: 148290. [57] WEI H M, HU H B, FENG J, et al. Yarn-form electrodes with high capacitance and cycling stability based on hierarchical nanostructured nickel-cobalt mixed oxides for weavable fiber-shaped supercapacitors[J]. Journal of Power Sources, 2018, 400: 157-166. [58] YONG S, HILLIER N, BEEBY S. Fabrication of a flexible aqueous textile zinc-Ion battery in a single fabric layer[J]. Frontiers in Electronics, 2022, 3: 866527. |