Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (1): 248-258.DOI: 10.19398/j.att.202207023
• Comprehensive Review • Previous Articles Next Articles
ZHAO Shuyinga, ZHANG Yingjiea, LI Yana,b, WANG Lua,b
Received:
2022-07-11
Online:
2023-01-10
Published:
2023-01-17
赵树颖a, 张莹洁a, 李彦a,b, 王璐a,b
通讯作者:
李彦,E-mail:yanli@dhu.edu.cn
作者简介:
赵树颖(1998—),女,山东威海人,硕士研究生,主要从事医用纺织材料的设计与制备方面的研究。
基金资助:
CLC Number:
ZHAO Shuying, ZHANG Yingjie, LI Yan, WANG Lu. Research progress of nanofibers for treatment of biofilm-related infections[J]. Advanced Textile Technology, 2023, 31(1): 248-258.
赵树颖, 张莹洁, 李彦, 王璐. 用于细菌生物膜感染治疗的纳米纤维的研究进展[J]. 现代纺织技术, 2023, 31(1): 248-258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202207023
[1] LI X, CHEN D, XIE S. Current progress and prospects of organic nanoparticles against bacterial biofilm[J]. Advances in Colloid and Interface Science, 2021, 294: 102475. [2] 周晶,霍丽珺,雷雅燕,等.生物膜胞外聚合物研究进展[J].昆明医科大学学报,2021,42(4):150-154. ZHOU Jing, HUO Lijun, LEI Yayan, et al. Advances in extracellular polymeric substances in biofilm[J]. Journal of Kunming Medical University, 2021, 42(4): 150-154. [3] 郑杨,查何.金黄色葡萄球菌生物膜防治研究进展[J].中国医药导报,2021,18(18):32-35. ZHENG Yang, ZHA He. Research progress in biofilm prevention and treatment of Staphylococcus aureus[J]. China Medical Herald, 2021, 18(18): 32-35. [4] 孙长龙,吴思,张倩楠,等.基于群体感应调控细菌生物膜形成研究进展[J].山东化工,2021,50(2):89-91. SUN Changlong, WU Si, ZHANG Qiannan, et al. Advances in the regulation of bacterial biofilm formation based on quorum sensing[J]. Shandong Chemical Industry, 2021, 50(2): 89-91. [5] FAZLI M, ALMBLAD H, RYBTKE M L, et al. Regulation of biofilm formation in pseudomonas and burkholderia species[J]. Environmental Microbiology, 2014,16(7):1961-1981. [6] JUHAS M, EBERL L, TUMMLER B. Quorum sensing: The power of cooperation in the world of pseudomonas[J]. Environmental Microbiology, 2005, 7(4): 459-471. [7] MURRAY C J L, IKUTA K S, SHARARA F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis[J]. Lancet, 2022, 399(10325): 629-655. [8] FU Y, LI X, REN Z, et al. Multifunctional electrospun nanofibers for enhancing localized cancer treatment[J]. Small, 2018, 14(33): 1801183 [9] SHAHRIAR S M S, MONDAL J, HASAN M N, et al. Electrospinning nanofibers for therapeutics delivery[J]. Nanomaterials, 2019, 9(4): 532. [10] PHAM S H, CHOI Y, CHOI J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery[J]. Pharmaceutics, 2020, 12(7): 630. [11] METCALF D G, BOWLER P G. Biofilm delays wound healing: A review of the evidence[J]. Burns & Trauma, 2013, 1(1): 5-12. [12] SUBHADRA B, KIM D H, WOO K, et al. Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors[J]. Materials, 2018, 11(9): 1676. [13] VERDEROSA A D, TOTSIKA M, FAIRFULL-SMITH K E. Bacterial biofilm eradication agents: A current review[J]. Frontiers in Chemistry, 2019, 7: 824. [14] ARCIOLA C R, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion[J]. Nature Reviews Microbiology, 2018, 16(7): 397-409. [15] WU Y K, CHENG N C, CHENG C M. Biofilms in chronic wounds: pathogenesis and diagnosis[J]. Trends in Biotechnology, 2019, 37(5): 505-517. [16] 林迪,孙长贵.生物膜研究相关进展[J].临床检验杂志,2017,35(4):241-245. LIN Di, SUN Changgui. Progress in biofilm research[J]. Chinese Journal of Clinical Laboratory Science, 2017, 35(4): 241-245. [17] LIU Y, LI Y, SHI L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections[J]. Journal of Controlled Release, 2021, 329: 1102-1116. [18] FILIPOVIC U, DAHMANE R G, GHANNOUCHI S, et al. Bacterial adhesion on orthopedic implants[J]. Advances in Colloid and Interface Science, 2020, 283: 102228. [19] GRISTINA A G, DOBBINS J J, GIAMMARA B, et al. Biomaterial-centered sepsis and the total artificial heart. Microbial adhesion vs tissue integration[J]. Journal of the American Medical Association, 1988, 259(6): 870-874. [20] COSTA R C, NAGAY B E, BERTOLINI M, et al. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections[J]. Advances in Colloid and Interface Science, 2021, 298: 102551. [21] RODRIGUEZ-MERCHAN E C, DAVIDSON D J, LIDDLE A D. Recent strategies to combat infections from biofilm-forming bacteria on orthopaedic implants[J]. International Journal of Molecular Sciences, 2021, 22(19): 10243. [22] 曹晋桂,刘鹏.细菌生物膜、滞留菌及其相关感染防控研究进展[J].中国感染控制杂志,2019,18(5):369-374. CAO Jingui, LIU Peng. Research progress of bacterial biofilm, persisters, as well as prevention and control for the related infection[J]. Chinese Journal of Infection Control, 2019, 18(5): 369-374. [23] 江琰笛,朱晶晶,陶崑,等.慢性难愈合创面与细菌生物膜形成相关性研究进展[J].中国消毒学杂志,2021,38(5):377-380. JIANG Yandi, ZHU Jingjing, TAO Kun, et al. Research progress on the correlation between chronic refractory wound and bacterial biofilm formation[J]. Chinese Journal of Disinfection, 2021, 38(5): 377-380. [24] MALLICK S, NAG M, LAHIRI D, et al. Engineered nanotechnology: An effective therapeutic platform for the chronic cutaneous wound[J]. Nanomaterials, 2022, 12(5): 778. [25] MAHESWARY T, NURUL A A, FAUZI M B. The insights of microbes' roles in wound healing: A compre-hensive review[J]. Pharmaceutics, 2021, 13(7): 981. [26] DARVISHI S, TAVAKOLI S, KHARAZIHA M, et al. Advances in the sensing and treatment of wound biofilms[J]. Angewandte Chemie, 2022,61(13): e202112218. [27] MIHAI M M, PREDA M, LUNGU I, et al. Nanocoatings for chronic wound repair-modulation of microbial colonization and biofilm formation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1179. [28] 肖吉,邱旭升,陈一心.细菌生物膜及利用植入物表面修饰防治的研究进展[J].中国骨与关节损伤杂志,2017,32(10):1119-1120. XIAO Ji, QIU Xusheng, CHEN Yixin. Research progress of bacterial biofilm and implant surface modification for control[J]. Chinese Journal of Bone and Joint Injury, 2017, 32(10): 1119-1120. [29] FRYKBERG R G, BANKS J. Challenges in the treatment of chronic wounds[J]. Advances in Wound Care, 2015, 4(9): 560-582. [30] ZHANG Y, YU J, ZHANG H, et al. Nanofibrous dressing: Potential alternative for fighting against antibiotic-resistance wound infections[J]. Journal of Applied Polymer Science, 2022, 139(20): e52178. [31] WANG Y, SUN H. Polymeric Nanomaterials for efficient delivery of antimicrobial agents[J]. Pharma-ceutics, 2021, 13(12): 2108. [32] LIU M, WANG F, LIANG M, et al. In situ green synthesis of rechargeable antibacterial n-halamine grafted poly(vinyl alcohol) nanofibrous membranes for food packaging applications[J]. Composites Communications, 2020, 17: 147-153. [33] ROSTAMABADI H, ASSADPOUR E, TABARESTANI H S, et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations[J]. Trends in Food Science & Technology, 2020, 100: 190-209. [34] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34): 8533-8554. [35] 熊富忠,赵小希,廖胤皓,等.材料表面特征对生物膜形成的影响及其应用[J].微生物学通报,2018,45(1):155-165. XIONG Fuzhong, ZHAO Xiaoxi, LIAO Yinhao, et al. Effects of surface properties on biofilm formation and the related applications[J]. Microbiology China, 2018, 45(1): 155-165. [36] ZHU X, JANCZEWSKI D, GUO S, et al. Polyion multi-layers with precise surface charge control for antifouling[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 852-861. [37] IVANOVA E P, TRUONG V K, WANG J Y, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention[J]. Langmuir, 2010, 26(3): 1973-1982. [38] QI M, GONG X, WU B, et al. Landing dynamics of swimming bacteria on a polymeric surface:Effect of surface properties[J]. Langmuir, 2017, 33(14): 3525-3533. [39] PENG Q, ZHOU X, WANG Z, et al. Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy: Effect of surface stiffness[J]. Langmuir, 2019, 35(37): 12257-12263. [40] CZAPKA T, WINKLER A, MALISZEWSKA I, et al. Fabrication of photoactive electrospun cellulose acetate nanofibers for antibacterial applications[J]. Energies, 2021, 14(9): 2598. [41] MA Y, ZHANG Z, NITIN N, et al. Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation[J]. Journal of Colloid and Interface Science, 2020, 578: 779-787. [42] ABRIGO M, KINGSHOTT P, MCARTHUR S L. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth[J]. ACS Applied Materials & Interfaces, 2015, 7(14): 7644-7652. [43] FERRARIS S, GIACHET F T, MIOLA M, et al. Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion[J]. Materials Science & Engineering C,Materials for Biological Applications, 2017, 76: 1-12. [44] COCHIS A, FERRARIS S, SORRENTINO R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing[J]. Journal of Materials Chemistry B, 2017, 5(42): 8366-8377. [45] 陈小楠,申元娜,李彭宇,等.细菌生物膜的特征及抗细菌生物膜策略[J].药学学报,2018,53(12):2040-2049. CHEN Xiaonan, SHEN Yuanna, LI Pengyu, et al. Bacterial biofilms: Characteristics and combat strategies[J]. Acta Pharmaceutica Sinica, 2018,53(12):2040-2049. [46] JAMALEDIN R, YIU C K Y, ZARE E N, et al. Advances in antimicrobial microneedle patches for combating infections[J]. Advanced Materials, 2020, 32(33): 2002129. [47] SU Y, MAINARDI V L, WANG H, et al. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide[J]. ACS Nano, 2020, 14(9): 11775-11786. [48] SU Y, MCCARTHY A, WONG S L, et al. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms[J]. Advanced Healthcare Materials, 2021, 10(12): 2100135. [49] FLEMING D, RUMBAUGH K P. Approaches to dispersing medical biofilms[J]. Microorganisms, 2017, 5(2): 15. [50] HUANG H, REN H, DING L, et al. Aging biofilm from a full-scale moving bed biofilm reactor: Charac-terization and enzymatic treatment study[J]. Bioresource Technology, 2014, 154: 122-130. [51] BURTON E, GAWANDE P V, YAKANDAWALA N, et al. Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1835-1840. [52] PARK J A, LEE S C, KIM S B. Synthesis of dual-functionalized poly(vinyl alcohol)/poly(acrylic acid) electrospun nanofibers with enzyme and copper ion for enhancing anti-biofouling activities[J]. Journal of Materials Science, 2019, 54(13): 9969-9982. [53] PIARALI S, MARLINGHAUS L, VIEBAHN R, et al. Activated polyhydroxyalkanoate meshes prevent bacterial adhesion and biofilm development in regenerative medicine applications[J]. Frontiers in Bioengineering and Biotech-nology, 2020, 8: 442. [54] HU X, HUANG Y Y, WANG Y, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections[J]. Frontiers in Microbiology, 2018, 9: 1299. [55] BEIRAO S, FERNANDES S, COELHO J, et al. Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin[J]. Photochemistry and Photobiology, 2014, 90(6): 1387-1396. [56] JIANG S, MA B C, HUANG W, et al. Visible light active nanofibrous membrane for antibacterial wound dres-sing[J]. Nanoscale Horizons, 2018, 3(4): 439-446. [57] KHALEK M A A, GABER S A A, EL-DOMANY R A, et al. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ ciprofloxacin nanofibers for chronic wound healing[J]. International Journal of Biological Macromolecules, 2021, 193: 1752-1766. [58] SHI Y G, JIANG L, LIN S, et al. Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens[J]. Food Chemistry, 2022, 374: 131585. [59] KALIA V C, PATEL S K S, KANG Y C, et al. Quorum sensing inhibitors as antipathogens: Biotech-nological applications[J]. Biotechnology Advances, 2019, 37(1): 68-90. [60] LEE J, LEE I, NAM J, et al. Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15424-15432. [61] MASLAKCI N N, AKALIN R B, ULUSOY S, et al. Electrospun fibers of chemically modified chitosan for in situ investigation of the effect on biofilm formation with quartz crystal microbalance method[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8010-8018. [62] 王颖思,周刚,彭红,等.一氧化氮在细菌抗药性和生物膜形成中的分子作用[J].工业微生物,2017,47(5):59-65. WANG Yingsi, ZHOU Gang, PENG Hong, et al. Progress in molecular functions of nitric oxide in bacterial resistance mechanisms and biofilm formation[J]. Industrial Microbiology, 2017, 47(5): 59-65. [63] CAI Y M, ZHANG Y D, YANG L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections[J]. Applied Microbiology and Biotech-nology, 2021, 105(10): 3931-3954. [64] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: Second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271-284. [65] LI M, LI N, QIU W, et al. Phenylalanine-based poly(ester urea)s composite films with nitric oxide-releasing capability for anti-biofilm and infected wound healing applications[J]. Journal of Colloid and Interface Science, 2022, 607: 1849-1863. |
[1] | GE Yeqian, XU Jiaqi, CAO Qi, ZHANG Xiaxia, WANG Yifeng, XU Fujun. Research on the preparation and the photocatalytic dye degradation performance of TiO2 nanofiber [J]. Advanced Textile Technology, 2023, 31(2): 197-. |
[2] | YANG Haizhen, MA Chuang, WEI Sujie, ZHOU Zelin, TIAN Zhengkun. Research progress of electrospun carbon nanotube-based composites in sensor applications [J]. Advanced Textile Technology, 2023, 31(2): 256-. |
[3] | ZHU Ranran, YUE Hongyin, CHEN Yonghui, LI Huijun. Preparation and properties of membranes based on PCL by electrospinning [J]. Advanced Textile Technology, 2023, 31(1): 130-135. |
[4] | WANG Lingxiao, XU Guilong, TANG Min, LIANG Yun. Preparation and filtration properties of electrospun aramid nanofiber membranes [J]. Advanced Textile Technology, 2023, 31(1): 136-144. |
[5] | WANG Zhankai, XU Shilong, YANG Shiyu, HU Yi, HU Liu. Preparation of zinc phthalocyanine grafted cellulose nanofiber and its dye degradation properties [J]. Advanced Textile Technology, 2023, 31(1): 204-212. |
[6] | ZHOU Xinru, HU Chengye, FAN Mengjing, HONG Jianhan, HAN Xiao. Continuous preparationand properties of nanofiber core-spun yarn based on water bath electrospinning [J]. Advanced Textile Technology, 2022, 30(6): 80-87. |
[7] | WEI Zhiyi, WANG Hui, YU Tianpei, CHENG Hui, MA Xin, LI Shouzhu. Research progress of silica-based nanofiber aerogels [J]. Advanced Textile Technology, 2022, 30(6): 231-241. |
[8] | WANG Huijia, CHEN Qiang, YI Yuqing, SHI Jingya, LI Ni. Effect of chain extension time on properties of polyurethane and electrospun nanofibers [J]. Advanced Textile Technology, 2022, 30(5): 67-73. |
[9] | LI Xiao, LIU Yuanjun, ZHAO Xiaoming. Research progress of electrospinning nanofiber-based sound-absorbing materials [J]. Advanced Textile Technology, 2022, 30(5): 246-258. |
[10] | SHI Min, WANG Tao, WANG Sheng. Properties and preparation of PVDF/PDMS superhydrophobic membrane for rapid oil-water separation by one-step method [J]. Advanced Textile Technology, 2022, 30(4): 108-114. |
[11] | WEI Yue, WANG Sheng, JI Lülü. Synthesis of nickel sulfide-based carbon nanofibers for electrocatalytic hydrogen evolution reaction [J]. Advanced Textile Technology, 2022, 30(3): 81-88. |
[12] | ZHENG Zuobao, JIA Jiao, FENG Yangyang, HOU Yijie, JIA Yongtang. Preparation of PMMA/PU new thermal retention material by electrospinning and its properties [J]. Advanced Textile Technology, 2022, 30(3): 89-96. |
[13] | JIA Ziqi, WANG Chen, ZHAO Tiantian, LIU Yang. Preparation and photocatalytic performance of N-doped graphene oxide/TiO2/PAN composite nanofiber membranes [J]. Advanced Textile Technology, 2022, 30(3): 97-107. |
[14] | ZHOU Rongxin, GE Yeqian. Preparation and electrochemical properties of carbon nanofiber anode materials [J]. Advanced Textile Technology, 2022, 30(1): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||