Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (4): 63-73.
Previous Articles Next Articles
Received:
2022-10-26
Online:
2023-07-10
Published:
2023-09-12
通讯作者:
丁新波,E-mail:dxblt@zstu.edu.cn
作者简介:
王寅 (1998—),男,南京人,硕士研究生,主要从事现代纺织技术及新产品开发方面的研究
基金资助:
CLC Number:
WANG Yina, DING Xinboa, LIU Taoa, b, QIU Qiaohuaa, WANG Yanminga. Preparation and conductive properties of flexible sensors based on silk fibroin/MXene composite nanofiber membranes[J]. Advanced Textile Technology, 2023, 31(4): 63-73.
王寅, 丁新波, 刘涛, 仇巧华, 王艳敏. 基于丝素/MXene复合纳米纤维柔性薄膜的制备及其导电性能[J]. 现代纺织技术, 2023, 31(4): 63-73.
[1] ZHENG S H, WANG H, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all‐flexible self‐powered integrated systems[J]. Advanced Materials, 2021, 33(10): e2005449. [2] SALAUDDIN M, RANA S M S, SHARIFUZZAMAN M, et al. A novel MXene/ecoflex nanocomposite‐coated fabric as a highly negative and stable friction layer for high‐output triboelectric nanogenerators[J]. Advanced Energy Materials, 2021, 11(1): 2002832. [3] MI X N, LI H, TAN R, et al. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic[J]. Biosensors and Bioelectronics, 2021, 192: 113482. [4] JIA C J, ZHU Y S, SUN F X, et al. A flexible and stretchable self-powered nanogenerator in basketball passing technology monitoring[J]. Electronics, 2021, 10(21): 2584. [5] MAURYA D, KHALEGHIAN S, SRIRAMDAS R, et al. 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles[J]. Nature Communications, 2020, 11: 5392. [6] LI Y, TIAN X, GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication[J]. Advanced Functional Materials, 2020, 30(5): 1907451. [7] LIU Z K, ZHU T X, WANG J R, et al. Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics[J]. Nano-Micro Letters, 2022, 14(1): 61. [8] LI C, CONG S, TIAN Z N, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors[J]. Nano Energy, 2019, 60: 247-256. [9] QIU A D, LI P L, YANG Z K, et al. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors[J]. Advanced Functional Materials, 2019, 29(17): 1806306. [10] LIU Y Q, HE K, CHEN G, et al. Nature-inspired structural materials for flexible electronic devices[J]. Chemical Reviews, 2017, 117(20): 12893-12941. [11] ZHOU Z H, PANATDASIRISUK W, MATHIS T S, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage[J]. Nanoscale, 2018, 10(13): 6005-6013. [12] JIA Z X, LI Z J, MA S F, et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor[J]. Journal of Colloid and Interface Science, 2021, 584: 1-10. [13] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1): 269-277. [14] GUO Y, ZHANG D Y, YANG Y, et al. MXene-encapsulated hollow Fe3O4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries[J]. Nanoscale, 2021, 13(8): 4624-4633. [15] ZHANG X, ZHANG Z H, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. [16] ZHU X Y, LIN L, WU R M, et al. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode[J]. Biosensors and Bioelectronics, 2021, 179: 113062. [17] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [18] CHERTOPALOV S, MOCHALIN V N. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films[J]. ACS Nano, 2018, 12(6): 6109-6116. [19] LI N, JIANG Y, ZHOU C H, et al. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38116-38125. [20] CHIA H L, MAYORGA-MARTINEZ C C, ANTONATOS N, et al. MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance[J]. Analytical Chemistry, 2020, 92(3): 2452-2459. [21] JIAN M Q, XIA K L, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017, 27(9): 1606066. [22] SANG Z, KE K, MANAS‐ZLOCZOWER I. Design strategy for porous composites aimed at pressure sensor application[J]. Small, 2019, 15(45): e1903487. [23] YANG K, YIN F X, XIA D, et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range[J]. Nanoscale, 2019, 11(20): 9949-9957. [24] 唐培朵, 戴俊, 韦凌志, 等. 丝素蛋白纳米纤维静电纺制备的研究[J]. 生物化工, 2018, 4(4): 118-120, 128. TANG Peiduo, DAI Jun, WEI Lingzhi, et al. Research progress of the electrospinning preparation of silk fibroin nanofibers[J]. Biological Chemical Engineering, 2018, 2018, 4(4): 118-120, 128. [25] ZHANG H R, ZHAO J T, XING T L, et al. Fabrication of silk fibroin/graphene film with high electrical conductivity and humidity sensitivity[J]. Polymers, 2019, 11(11): 1774. [26] 严国荣, 廖喜林, 刘让同, 等. 静电纺丝纳米纤维的应用研究进展[J]. 上海纺织科技, 2018, 46(5): 1-6. YAN Guorong, LIAO Xilin, LIU Rangtong, et al. Advances in application of electorstatic spinning nanofibers[J]. Shanghai Textile Science, 2018, 46(5): 1-6. [27] 袁文凤, 王军凯, 夏启勋, 等. Ti3C2 MXene柔性应力/应变传感器的制备及应用研究进展[J]. 硅酸盐学报, 2022, 50(5): 1447-1454. YUAN Wenfeng, WANG Junkai, XIA Qixun, et al. Research progress on preparation and application of flexible stress/strain sensors based on two-dimensional Ti3C2 MXene[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1447-1454. [28] SHARMA S, CHHETRY A, KO S, et al. Highly sensitive and stable pressure sensor based on polymer-mxene composite nanofiber mat for wearable health monitoring[C]//33rd International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver, BC, Canada. IEEE, 2020: 810-813. [29] 王子婧. MXene的表面改性及气体传感特性研究[D]. 西安: 陕西科技大学, 2021. WANG Zijing. Study on Surface Modification and Gas Sensing Characteristics of MXene[D]. Xi’an: Shanxi University of Science and Technology, 2021. [30] LIANG X Y, REN X F, YANG Q Y, et al. A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale, 2021, 13(5): 2843-2848. [31] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. [32] 周晓伟. Ti3C2Tx的制备表征及其SERS应用研究[D]. 天津: 天津大学, 2018. ZHOU Xiaowei. The Synthesis, Characterization of Ti3C2Tx and Applying on Sers Study[D]. Tianjin: Tianjin University, 2018. [33] XUE Q, ZHANG H J, ZHU M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847. [34] LUO J M, TAO X Y, ZHANG J, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10(2): 2491-2499. [35] 田申. 二维Ti3C2Tx材料的制备、改性及其对TPU松弛行为的影响研究[D]. 淮南: 安徽理工大学, 2021. TIAN Shen. Study on the Preparation and Modification of 2D Ti3C2Tx Material and Its Effect on TPU Relaxation Behavior[D]. Huai’nan: Anhui University of Science and Technology, 2021. [36] 时志强, 吕国霞. 二维层状材料Ti3C2Tx的制备及其电化学储钠性能[J]. 天津工业大学学报, 2018, 37(6): 48-54. SHI Zhiqiang, LÜ Guoxia. Preparation and performance of electrochemical sodium storage of two-dimension Ti3C2Tx material[J]. Journal of Tianjin Polytechnic University, 2018, 37(6): 48-54. [37] RIAZI H, NEMANI S K, GRADY M C, et al. Ti3C2 MXene-polymer nanocomposites and their applications[J]. Journal of Materials Chemistry A, 2021, 9(13): 8051-8098. [38] 李萌. Ti3C2Tx修饰的纸基/织物基电化学汗液传感器[D]. 上海: 东华大学, 2021. LI Meng. Ti3C2Tx Modified Paper/Fabric Based Electrochemical Sweat Sensors[D]. Shanghai: Donghua University, 2021. [39] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015, 36(11): 6-11, 19. WANG Xiaoliang, FENG Xuewei PAN Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015, 36(11): 6-11, 19. [40] LI Y, ZHU J D, CHENG H, et al. Developments of advanced electrospinning techniques: A critical review[J]. Advanced Materials Technologies, 2021, 6(11): 2100410. [41] 熊艳娜. 高强度丝素蛋白膜的制备[D]. 青岛: 青岛科技大学, 2016. XIONG Yanna. The Preparetion of High-strength Silk Fibroin Film[D]. Qingdao: Qingdao University of Science and Technology, 2016. [42] 梁晴晴. 光照对丝素蛋白溶解及成膜性能的探究[D]. 青岛: 青岛科技大学, 2018. LIANG Qingqing. Light Irradiation on the Dissolution of Silk Fibroin and Its Film Formation Prorerties[D]. Qingdao: Qingdao University of Science and Technology, 2018 [43] 蒋幸子. 丝素蛋白基复合水凝胶的制备及其药物释放研究[D]. 合肥: 安徽大学, 2021. JIANG Xinzi. Preparation of Silk Fibroin Based Composite Hydrogels and Its Drug Release Behaviors[D]. Hefei: Anhui University, 2021. |
[1] | QIN Ji’en, TANG Yuqin, QIN Xiuxian, YIN Yunjie. Preparation of MXene/nylon fabrics and their conductive properties [J]. Advanced Textile Technology, 2024, 32(8): 1-6. |
[2] | ZHOU Jiabao, LIU Tao, QIU Qiaohua, ZHU Lingqi, WANG Yanmin, DIN Xinbo. Preparation and antibacterial properties of silk fibroin-polyaniline composite nanofiber membrane [J]. Advanced Textile Technology, 2024, 32(5): 9-17. |
[3] | LI Jinchao, MEI Shuo, DU Yujia, MA Biao, LI Hong. Preparation and performance of polyurethane nanofiber membrane for air filtration#br# [J]. Advanced Textile Technology, 2024, 32(5): 18-22. |
[4] | QI Qinghuan, SHI Xiaohan, ZHANG Qing, YUAN Baokui, ZHOU Yuman. Construction and thermal conductivity of PVDF/Ag fiber membranes with high thermal conductivity [J]. Advanced Textile Technology, 2024, 32(5): 23-31. |
[5] | XING Dongfeng, LI Yunhuan, GAO Yu, WANG Fuxing, FU Qiang, JIN Dalai. Preparation and hydrophilic properties of star-shaped PLLA-PEG block copolymer fiber membranes [J]. Advanced Textile Technology, 2024, 32(3): 45-52. |
[6] | WANG Lüfeia, ZHU Weigangb, LUO Jianyib, HUANG Aipingb, XIE Yonga. Development of traditional Chinese medicine pulse diagnosis information collection gloves based on flexible sensing technology [J]. Advanced Textile Technology, 2024, 32(2): 1-8. |
[7] | YUE Xinyana, HONG Jianhana, b . Research progress on wearable flexible sensors with one-dimensional structure [J]. Advanced Textile Technology, 2024, 32(2): 27-39. |
[8] | XU Wenyu, WANG Huiya, ZHU Yaofeng. Core-shell structured PEDOT:PSS/SA@MXene composite fibers with microwave absorption performance [J]. Advanced Textile Technology, 2024, 32(12): 10-28. |
[9] | LI Shunyang, ZHUGE Chengyao, LÜ Wangyang, LI Nan. Preparation and properties of controllable crosslinked PVA conductive hydrogel fabric flexible sensor [J]. Advanced Textile Technology, 2024, 32(11): 35-45. |
[10] | WANG Qi, CHEN Mingxing, ZHANG Wei WU Yanjie, WANG Xinya. Research progress in electrospun Janus nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 1-10. |
[11] | ZHANG Yanan, XU Bingjie, LI Mengwei, REN Haotian, GAO Yujie, WANG Yijia, WU Jindan, . Preparation and antibacterial properties of loaded aggregation-induced emission photosensitizers nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 31-39. |
[12] | . Preparation of GA cross-linked PVA/SA electrospinning nanofibrous membranes and their moisture-powered generation performance [J]. Advanced Textile Technology, 2024, 32(10): 40-47. |
[13] | ZHU Jianzheng, CUI Jingping, ZHOU Lan, ZHANG Guoqing. Preparation of a dual-loaded polyaniline photothermal membrane based on electrospinning and its application in wastewater treatment [J]. Advanced Textile Technology, 2024, 32(10): 48-55. |
[14] | YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, HU Yawen. Research on the application of electrospinning nanofibers in the field of drug delivery [J]. Advanced Textile Technology, 2024, 32(10): 56-67. |
[15] | LIU Shu, DING Xinbo, LIN Wanli, QIU Qiaohua, LI Ya, . Preparation and water-induced power generation performance of flexible macroporous SiO2 nanofibers [J]. Advanced Textile Technology, 2023, 31(6): 72-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||