[1] ATALIE D, ROTICH G K. The influence of yarn parameters on thermo-physiological comfort of cotton woven fabrics[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(5): 2035-2047.
[2] 黄红霞.夏季自然通风环境人体生理调节对热舒适性影响研究[D]. 绵阳:西南科技大学,2023: 5.
HUANG Hongxia. Effects of Human Physiological Termoregulation on Thermal Comfort in Natural Ventilation Environment in Summer[D]. Mianyang: Southwest University of Science and Technology, 2023: 5.
[3] XU H J, XING Z B, WANG F Q, CHENG Z M, et al. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications[J]. Chemical Engineering Science, 2019, 195: 462-483.
[4] 程宁波, 缪东洋, 王先锋, 等. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022,43(10):200-208.
CHENG Ningbo, MIAO Dongyang, WANG Xianfeng, et al. Review in functional textiles for personal thermal and moisture comfort management[J]. Journal of Textile Research, 2022, 43(10): 200-208.
[5] BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58: 182-189.
[6] PENG Y C, LI W, LIU B F, et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management[J]. Nature Communications, 2021, 12: 6122.
[7] 秦国锋,张婧婧,徐子威, 等. BN纤维对石墨烯微片/聚丙烯复合材料导热绝缘性能的影响[J].复合材料学报,2020, 37(3): 546-552.
QING Goufeng, ZHANG Jingjing, XU Ziwei, et al. Effect of BN fiber on thermal conductivity and insulation properties of graphene nanoplatelets/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 546-552.
[8] ABBAS A, ZHAO Y G, WANG X, LIN T, et al. Cooling effect of MWCNT-containing composite coatings on cotton fabrics[J]. Journal of the Textile Institute, 2013, 104(8): 798-807.
[9] GAO T T, YANG Z, CHEN C J, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11): 11513-11520.
[10] 苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J/OL]. 东华大学学报(自然科学版), 2022: 1-11.
SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: Visual bibliometric analysis based on CNKI database[J/OL]. Journal of Donghua University(Natural Science), 2022: 1-11.
[11] LYU C X, ZHAO P, XIE J, et al. Electrospinning of nanofibrous membrane and its applications in air filtration: A review[J]. Nanomaterials, 2021, 11(6): 1501.
[12] PARK Y, YOU M, SHIN J, et al.Thermal conductivity enhancement in electrospun poly(vinyl alcohol)and poly(vinyl alcohol)/cellulose nanocrystal composite nanofibers[J]. Scientific Reports, 2019, 9: 3026.
[13] GU J W, LV Z Y, WU Y L, et al. Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique[J]. Composites Part A, 2015, 79: 8-13.
[14] GRIFFIN A, GUO Y H, HU Z D, et al. Scalable methods for directional assembly of fillers in polymer composites: Creating pathways for improving material properties[J]. Polymer Composites, 2022, 43(9): 5747-5766.
[15] GOU B, XU H S, ZHOU J G, et al. Polymer-based nanocomposites with ultra-high in-plane thermal conductivity via highly oriented boron nitride nanosheets[J]. Polymer Composites, 2022, 43(4): 2341-2349.
[16] ZHUANG Y F, ZHENG K, CAO X Y, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology[J]. ACS Nano,2020, 14(9): 11733-11742.
[17] CHEN Y Z, CHEN J L, ZHANG Y M, et al. Flexible fiber membrane based on carbon nanotube and polyurethane with high thermal conductivity[J]. Nanomaterials, 2021(10), 11: 2504.
[18] ZHANG L, LI Z F, LIU G T, et al. Enhancement of the electrical and thermal conductivity of epoxy-based composite films through the construction of the multi-scale conductive bridge structure[J]. Composites Science and Technology, 2023, 239: 110074.
[19] CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal, 2019, 369: 1150-1160.
[20] SHEN Z M, FENG J C. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10: 24193-24200.
[21] ZUO X W, FAN T T, QU L J, et al. Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics[J]. Nano Energy, 2022, 101: 107559.
|