Research progress in the preparation and application of melt-blown nonwovens
LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b
2024, 32(5):
116-129.
Asbtract
(
)
PDF (1274KB)
(
)
References |
Related Articles |
Metrics
As the global COVID-19 epidemic is raging, nonwovens with functions such as air liquid filtration, disinfection and antibacterial properties are rapidly becoming a hot topic of attention. As a new textile material, melt-blown nonwovens have the advantages of good flexibility, high air permeability, simple manufacturing process and low cost. Compared with woven fabrics, nonwoven fabrics have shorter production process, faster speed, wider fiber selection range, and smaller minimum unit fineness. Especially in terms of porosity, the total porosity of nonwoven filter mats can reach more than 80%. In view of the advantages of melt-blown nonwoven materials, now people have been applied to air filtration, liquid filtration, medical antibacterial disinfection, intelligent electronic textiles and other fields. This paper summarized the latest research progress of melt-blown nonwovens in raw material selection, manufacturing process, structure design and application, and prospected the research and development prospects. In order to clarify the future development direction, on the basis of existing technology and problems, it is very important to sum up how to develop melt-blown nonwovens with new technology and new properties in the future.
At present, there are a lot of research progress and achievements in melt-blown nonwoven materials. For example, polylactic acid (PLA) is used as raw material, and the melt-blown nonwoven materials with green environmental protection and degradable function are developed by melt-blown process. The materials can be manufactured by introducing polyethylene glycol or mixing PLA and polycaprolactone, and the toughness of the materials is better than that of pure PLA melt-blown nonwoven materials, and they can be used for air filtration and other aspects to reduce environmental pollution and resource waste. By chemical modification of polypropylene (PP) melt-blown nonwovens, PP nonwovens can obtain self-cleaning, super hydrophobic, ultra-high filtration efficiency and other functions, so as to be better used in human production and life. Microfiber nonwovens prepared by melt-blown nonwovens have the characteristics of large specific surface area, small pore size and high porosity. Therefore, compared with nonwovens made by other processes, melt-blow nonwovens have significant advantages in filter, shielding, heat insulation and oil absorption, and they can be widely used in warm keeping, filtration, oil absorption, medical health, industrial and family wiper cloth, sound insulation and other fields. One of the representative applications of filter materials is the mask, melt-blow material is the core of the mask, playing the main filtering role.
At present, due to technical limitations, it is slightly difficult to innovate the equipment and process of domestic melt-blown nonwoven materials in the short term. Therefore, the innovation of melt-blown nonwovens mainly focuses on the research of raw materials. The melt-blown nonwovens in the market are basically made of PP, and the PP melt-blown nonwovens occupy almost all the share of the melt-blown market. However, the use of single material undoubtedly limits the development and application of melt-blown materials to a certain extent. The development of textile industry and textile technology has played a vital role in the evolution of human civilization. With the development of the scientific and technological level, some advantages and suitable development directions of melt-blown nonwovens materials have been found. Melt-blown nonwovens materials are developing towards multi-function, environmental protection, recyclability and better benefiting human beings. The function modification and function enhancement of melt-blown nonwovens are developing vigorously. At present, PET, PP or other composite filter media are mainly used in China, and although much attention has been paid to the application of high-performance fiber filter materials, it is still necessary to increase research and development efforts, especially in the structural design and finishing. It is necessary to improve product performance through optimizing the product structure, so that the filter media has the advantages of high efficiency, low resistance, easy cleaning and long service life. In addition, there still lacks authoritative testing and certification bodies of high temperature-resistant filter materials in China, which restricts the entry of high-performance filter material into the high-end market to a certain extent, so it is necessary to increase the investment of testing institutions and testing equipment.