[1] 杨玥, 冯涛, 梁虹,等. 融合交叉注意力机制的图像任意风格迁移[J].计算机科学, 2022 ,49(S1):345-352.
YANG Yue, FENG Tao, LIANG Hong, et al. Image arbitrary style transfer via criss-cross attention[J]. Computer Science. 2022,49(S1): 345-352.
[2] JIANG S,LI J,FU Y, et al. Deep learning for fashion style generation[J]. IEEE Transactions on Neural Networks and Learnning Systems, 2022, 33 (9): 4538-4550.
[3] 林碧珺, 耿增民, 洪颖, 等. 卷积神经网络在纺织及服装图像领域的应用[J].北京服装学院学报:自然科学版, 2021,41(1):92-99.
LIN Bijun, CENG Zengming, HONG Ying, et al. Application ofconvolutional neural network in textile and clothing image field [J]Journal of Beijing Institute of Fashion Technology ( Natural Science Edition), 2021, 41 (1) : 92-99.
[4] Long J, Shelhamer E , Darrell T .Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
[5] Huang Xun, Belongie Serge. Arbitrary style transfer in real-time with adaptive instance normalization[J].International Conference on Computer Vision, 2017:1501-1510.
[6] KIM M S, CHOI H C. Uncorrelated feature encoding for faste rim age style transfer [J]. Neural Networks, 2021, 148-157.
[7] JunYan Zhu, Taesung Park, Phillip Isola.et. Unpaired image-to-image translation using cycle-consistent adversarial networks[J].International Conference on Computer Vision, 2017: 2242-2251.
[8] 王婷, 李航, 胡智. 一种VGGNet的图像风格迁移算法设计与实现[J].计算机应用与软件, 2019, 36(11):224-228.
Wang Ting, Li Hang, Hu Zhi. Design and implementation of image style migration algorithm based on VGGNet. [J]Computer Applications and Software,2019, 36(11):224-228.
[9] EFROS A , FREEMAN W T. Image quilting for texture synthesis and transfer[C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM press, 2001:341-346.
[10] 王杨,郁振鑫,卢嘉, 等. 多区域差异化的图像风格迁移算法[J]. 计算机工程与应用, 2021, 57(12): 211-215.
WANG Yang, YU Zhenxin, LU Jia, et al. Multi-region differential image style transfer algorithm[J]. Computer Engineering and Applications, 2021, 57(12): 211-215.
[11] CHONG Y W,PENG C W,ZHANG J J, et al. Style transfer for unsupervised domain adaptive person re-identification[J]. Neurocomputing,2021, 422 : 314-321.
[12] LI J Y,WANG O,CHEN H, et al. A review on neural style transfer[J]. Journal of Physics : Conference Series, 2020,1651 (1):21-23.
[13] 沈瑜, 杨倩, 苑玉彬, 等.目标边缘清晰化的图像风格迁移[J].激光与光电子学进展, 2021, 58(12):241-253.
Shen Yu, Yang Qian,Yuan Yubin,et al. Image style transfer with clear target edges[J]. Laser & Optoelectronics Progress, 2021, 58(12):241-253.
[14] 谭永前,曾凡菊,吴位巍,等.基于非线性滤波和边缘检测的纹理传输图像风格化处理[J].激光与光电子学进展,2018,55(6):185-190.
TAN Y Q, ZENG F J,WU W W ,et al. Texture transmissionimage stylized processing based on non-Linear filteringand edge detection[J]. Laser & Optoelectronics Progress,2018,55(6):185-190.
[15] 魏雨, 黄玉蕾. Kirsch联合高低双阈值的RGB图像边缘检测算法[J].计算机测量与控制, 2023, 31(3):95-101.
WEI Yu, HUANG Yulei. RGB image edge detection based on kirsch combined with high and low double thresholds[J]. Computer Measurement &Control, 2023, 31(3):95-101.
[16] 阮子行, 黄勇, 王梦,等.基于迁移学习番茄品质分级的研究应用[J].包装与食品机械, 2023, 41(2):41-47.
Ruan Zixing, Huang Yong, Wang Meng, et al. Research and application of tomato quality grading based on transfer learning[J]. Computer Measurement &Control, 2023, 41(2):41-47.
[17] 王希雅, 王奔. 基于注意力机制的轻量级水下图像风格迁移方法[J].杭州师范大学学报:自然科学版, 2023, 22(4):381-388.
Wang Xiya, Wang Ben. A lightweight underwater image style transfer method based on attention mechanism [J]. Journal of Hangzhou Normal University: Natural Science Edition, 2023,22 (4): 381-388.
[18] 谭永前, 曾凡菊. 基于拉普拉斯算子和颜色保留的神经风格迁移算法[J].计算机应用, 2022, 42(10):8-9.
TAN Yongqian, ZENG Fanju. Neural style transfer algorithm based on Laplacian operator and color retention [J]. journal of Computer Applications, 2022, 42(10):8-9.
[19] Hameed K , Chai D , Rassau A .Score-based mask edge improvement of Mask-RCNN for segmentation of fruit and vegetables[J].Expert Systems with Applications, 2022, 190:116-205.
[20] RISSER E,WILMOT P,BARNES C.Stable and controllable neural texture synthesis and style transfer using histogram losses [J]. Computer Science, 2017 , 1701 (1) :088-093.
[21] Ge Y , Zhang R , Wu L ,et al. DeepFashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images[J]. 2019.(10):073-079.
[22] XYDEAS C S, PETROVIC V. Objective image fusion per-formance measure[J].Military Technical Courier, 2020, (36):308-309.
[23] ZHENG C, CHAM T J, CAI J, The spatially-correlative loss for various image translation tasks[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 16402-16412.
[24] 陈佳,董学良,梁金星,等. 基于注意力机制的CycleGAN服装局部风格迁移研究[J]. 计算机工程,2021,47(11):305-312.
CHEN Jia,DONG Xueliang,LIANG Jinxing,et al. Research on the local style transfer of clothing images by cyclegan based on attention mechanism[J]. Computer Engineering,2021,47(11):305-312.
[25] 刘哲良,朱玮,袁梓洋. 结合全卷积网络与CycleGAN的图像实例风格迁移[J]. 中国图象图形学报,2019,24(8):1283-1291.
Liu Zheliang;Zhu Wei;Yuan Ziyang. Image instance style transfer combined with fully convolutional network and cycleGAN [J]. journal of Computer Applications, 2019,24(8):1283-1291.
[26] 管绍春, 向宇. 基于生成对抗网络的服装图像风格迁移[J]. 电脑知识与技术,2019,15(26):191-193.
Guan Shaochun, Xiang Yu. Style transfer of clothing images based on generative adversarial networks [J] Computer Knowledge and Technology, 2019,15 (26): 191-193.
|