[1] 贾雪菲, 郭美璇, 曹雪芳. 吸波织物的研究进展[J]. 北京服装学院学报(自然科学版), 2023, 43(3): 103-110.
JIA Xuefei, GUO Meixuan, CAO Xuefang. Research progress of wave-absorbing fabrics[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2023, 43(3): 103-110.
[2] 林燕萍,杨陈.石墨烯制备及应用研究进展[J]. 针织工业, 2019(12): 57-61.
LIN Yanping, YANG Chen. Research progress in preparation and application of graphene[J]. Knitting Industries, 2019(12): 57-61.
[3] 赵秋萍, 杨柳, 赵胜斌, 等. 氮掺杂石墨烯的制备及阻燃性能研究[J]. 化工新型材料, 2021, 49(4): 92-98.
ZHAO Qiuping, YANG Liu, ZHAO Shengbin, et al. Preparation of nitrogen-doped graphene and its flame retardantproperty[J]. New Chemical Materials, 2021, 49(4): 92-98.
[4] 王超, 蔡普宁, 陈明辉, 等. 石墨烯多功能阻燃面料的开发与性能[J]. 上海纺织科技, 2023, 51(6): 37-41.
WANG Chao, CAI Puning, CHEN Minghui, et al. Development of multifunctional flame retardant grapheme fabric and its properties[J]. Shanghai Textile Science & Technology, 2023, 51(6): 37-41.
[5] 胡洪亮, 谢文彬, 李晶辉. 石墨烯协效阻燃聚合物复合材料的研究进展[J]. 化工技术与开发, 2023, 52(9): 26-30.
HU Hongliang, XIE Wenbin, LI Jinghui. Research progress of graphene synergistic flame retardant polymer composites[J]. Technology & Development of Chemical Industry, 2023, 52(9): 26-30.
[6] SANDOVAL S, KUMAR N, SUNDARESAN A, et al. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping[J]. Chemistry–A European Journal, 2014, 20(38): 11999-12003.
[7] SANDOVAL S, KUMAR N, ORO-SOLÉ J, et al. Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide[J]. Carbon, 2016, 96: 594-602.
[8] KIM M J, JEON I Y, SEO J M, et al. Graphene phosphonic acid as an efficient flame retardant[J]. ACS Nano, 2014, 8(3): 2820-2825.
[9] SOME S, SHACKERY I, KIM S J, et al. Phosphorus-doped graphene oxide layer as a highly efficient flame retardant[J]. Chemistry–A European Journal, 2015, 21(44): 15480-15485.
[10] LIN Y P, KSARI Y, AUBEL D, et al. Efficient and low-damage nitrogen doping of graphene via plasma-based methods[J]. Carbon, 2016, 100: 337-344.
[11] YOUNG R J, LIU M, KINLOCH I A, et al. The mechanics of reinforcement of polymers by graphene nanoplatelets[J]. Composites Science and Technology, 2018, 154: 110-116.
[12] SEHAQUI H, EZEKIEL MUSHI N, MORIMUNE S, et al. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1043-1049.
[13] GALLAND S, BERTHOLD F, PRAKOBNA K, et al. Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper[J]. Biomacromolecules, 2015, 16(8): 2427-2435.
[14] GAO Z, ZHU J, RAJABPOUR S, et al. Graphene reinforced carbon fibers[J]. Science Advances, 2020, 6(17): eaaz4191.
[15] JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters, 2011, 11(6): 2472-2477.
[16] XU B, SHI L, GUO X, et al. Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(18): 6464-6468.
[17] LI T, YANG G, WANG J, et al. Excellent electrochemical performance of nitrogen-enriched hierarchical porous carbon electrodes prepared using nano-CaCO3 as template[J]. Journal of Solid State Electrochemistry, 2013, 17(10): 2651-2660.
[18] ZHOU K, GUI Z, HU Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites[J]. Composites: Part A: Applied Science and Manufacturing, 2016, 80: 217-227.
[19] HUANG G, GAO J, WANG X, et al. How can graphene reduce the flammability of polymer nanocomposites?[J]. Materials Letters, 2012, 66(1): 187-189.
[20] JEON I Y, BAE S Y, SEO J M, et al. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling[J]. Advanced Functional Materials, 2015, 25(45): 6961-6975.
[21] PAREDEZ P, MAIA DA COSTA M E H, ZAGONEL L F, et al. Growth of nitrogenated fullerene-like carbon on Ni islands by ion beam sputtering[J]. Carbon, 2007, 45(13): 2678-2684.
[22] BARREIRO A, BÖERRNERT F, AVDOSHENKO S M, et al. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing[J]. Scientific Reports, 2013, 3: 1115.
[23] 原永玖, 李 欣. 飞秒激光加工石墨烯材料及其应用[J]. 激光与光电子学进展, 2020, 57(11):111414.
YUAN Yongjiu, LI Xin. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414.
[24] 杨赏娟, 曹赟, 贺艳兵, 等. 石墨烯基材料在电磁屏蔽领域的研究进展[J]. 新型炭材料, 2024, 39(3): 1-17.
YANG Shangjuan, CAO Yun, HE Yanbing, et al. Research progress of graphene-based materials in electromagnetic-shielding applications[J]. New Carbon Materials, 2024, 39(3): 1-17.
[25] LIU P, ZHANG Y, YAN J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019,368: 285-298.
[26] 张兴丽, 陈之岳, 陈昊. 纳米纤维素-氧化石墨烯层状薄膜的制备与性能[J]. 功能材料, 2023, 54(1): 1092-1096.
ZHANG Xingli, CHEN Zhiyue, CHEN Hao. Preparation and characterization of nanocellulose-graphene layered composite films[J].
Journal of Functional Materials, 2023, 54(1): 1092-1096.
[27] WANG J, SONG F, DING Y, et al. The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites[J]. Materials & Design,2020,195: 109073.
|