[1] 马艳丽,刘茜,刘玮.用于智能纺织品的柔性传感器研究进展[J].传感器与微系统,2015,34(4):1-3,7. MA Yanli, LIU Qian, LIU Wei. Research progress of flexible sensor for smart textiles[J]. Transducer and Microsystem Technologies, 2015, 34(4): 1-3,7. [2] ZHOU Z, PADGETT S, CAI Z, et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep[J]. Biosensors and Bioelectronics, 2020, 155: 112064. [3] LI J, MA Q, ALAN HS, et al. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model[J]. Applied Ergonomics, 2019, 75: 162-169. [4] YAN C, GAO Y, ZHAO S, et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting[J]. Nano Energy, 2020, 67: 104235. [5] MAHMOUD K, SALAM S, EL-HADI H. Designing smart textiles prints with interactive capability[J]. Journal of Design Sciences and Applied Arts, 2020, 1(1): 96-107. [6] KIM S, YOON H, LEE H, et al. Epitaxy-driven vertical growth of single-crystalline cobalt nanowire arrays by chemical vapor deposition[J]. Journal of Materials Chemistry C, 2015, 3(1): 100-106. [7] DRISKO G L, GATEL C, FAZZINI P F, et al. Air-stable anisotropic monocrystalline nickel nanowires characterized using electron holography[J]. Nano Letters, 2018, 18(3): 1733-1738. [8] TANG M, WU Y, YANG J, et al. Graphene/tungsten disulfide core-sheath fibers: High-performance electrodes for flexible all-solid-state fiber-shaped supercapacitors[J]. Journal of Alloys and Compounds, 2021, 858: 157747. [9] BOZ E B, TASDEMIR A, BICER E, et al. Emergent hierarchical porosity by ZIF-8/GO nanocomposite increases oxygen electroreduction activity of Pt nanoparticles[J]. International Journal of Hydrogen Energy, 2021, 46(65): 32858-32870. [10] DING S, JIU J T, GAO Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6190-6199. [11] WOO J, LEE H, YI C, et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics[J]. Advanced Functional Materials, 2020, 30(29): 1910026. [12] ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11 (26): 23649-23658. [13] 王红,贾庆明,陕绍云.手性导电高分子的应用进展[J].高分子材料科学与工程,2019,35(5):171-178. WANG Hong, JIA Qingming, SHAN Shaoyun. Progress in the application of chiral conductive polymers[J]. Polymer Materials Science & Engineering, 2019, 35(5): 171-178. [14] TENG W, ZHOU Q, WANG X, et al. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor[J]. Chemical Engineering Journal, 2020, 390: 124569. [15] LIU G, CHEN X, LIU J, et al. Fabrication of PEDOT: PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors[J]. Electrochimica Acta, 2021, 365: 137363. [16] YE C, REN J, WANG Y, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles[J]. Matter, 2019, 1(5): 1411-1425. [17] CAI H, LIU Z, XU M, et al. High performance flexible silk fabric electrodes with antibacterial, flame retardant and UV resistance for supercapacitors and sensors[J]. Electrochimica Acta, 2021: 138895. [18] 曾德福,周亮,王诗,等.碳纳米材料在电化学传感器中的研究与应用[J].湖北科技学院学报(医学版),2020,34(2):163-166. ZENG Defu, ZHOU Liang, WANG Shi, et al. Research and application of electrochemical sensor of carbon nanomaterials[J]. Journal of Hubei University of Science and Technology (Medical Sciences), 2020, 34(2): 163-166. [19] WU J, WANG Z, LIU W, et al. Bioinspired superelastic electroconductive fiber for wearable electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44735-44741. [20] CHEN Q, LI Y, XIANG D, et al. Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions[J]. Macromolecular Materials and Engineering, 2019, 305 (2):1900525. [21] 谢晓旭,王彦,诸静,等.基于夹心结构的碳纳米管/石墨烯复合柔性导电纤维的制备及其应用[J].现代化工,2020,40(10):188-192. XIE Xiaoxu, WANG Yan, ZHU Jing, et al. Preparation and application of carbon nanotube/graphene composite flexible conductive fiber based on sandwich structure[J]. Modern Chemical Industry, 2020, 40(10): 188-192. [22] 胡耀娟,金娟,张卉,等,石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010,26(8):2073-2086. HU Yaojuan, JIN Juan, ZHANG Hui, et al. Graphene: Synthesis, functionalization and applications in chemistry[J]. Acta Physico-Chimica Sinica, 2010, 26(8): 2073-2086. [23] MARRIAM I, WANG X, TEBYETEKERWA M, et al. A bottomup approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A, 2018, 6 (28): 13633-13643. [24] HUANG T, HE P, WANG R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors[J]. Advanced Functional Materials, 2019, 29 (45): 1903732. [25] ZHU M, LOU M, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020, 69: 104429. [26] LEVITT A, ZHANG J, DION G, et al. MXene-based fibers, yarns, and fabrics for wearable energy Storage Devices[J]. Advanced Functional Materials, 2020, 30(47): 2000739. [27] PU J, ZHAO X, ZHA X, et al. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare[J]. Journal of Materials Chemistry A, 2019, 7, 15913-15923. [28] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12): 1910504. [29] QI H S, SCHULZ B, VAD T, LIU J, et al. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22404-22412. [30] 刘旭华,苗锦雷,曲丽君,等.用于可穿戴智能纺织品的复合导电纤维研究进展[J].复合材料学报,2021,38(1):67-83. LIU Xuhua, MIAO Jinlei, QU Liqun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica,2021, 38(1): 67-83. [31] LEE S, SHIN S, LEE S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics[J]. Advanced Functional Materials, 2015, 25(21): 3114-3121. [32] MA H, GAO Q, GAO C, et al. Facile synthesis of electroconductive AZO@ TiO2 whiskers and their application in textiles[J]. Journal of Nanomaterials, 2016 (20): 1-7. [33] WANG Z, CHENG J, GUAN Q, et al. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors[J]. Nano Energy, 2018, 45: 210-219. [34] SEYEDIN S, YANZA E R S, RAZAL J M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets[J]. Journal of Materials Chemistry A, 2017, 5(46): 24076-24082. [35] HOSSAIN M M, SHIMA H, ISLAM M A, et al. Simple synthesis process for ZnO sphere-decorated CNT fiber and its electrical, optical, thermal, and mechanical properties[J]. RSC Advances, 2016, 6(6): 4683-4694. [36] XU Y, XIE X, HUANG H, et al. Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor[J]. Journal of Materials Science, 2021, 56(3): 2296-2310. [37] KIM T, PARK C, SAMUEL E P, et al. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10013-10025. [38] NING C, DONG K, CHENG R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials, 2021, 31(4): 2006679. [39] CHENG Y, WANG R R, SUN J, et al. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires[J]. ACS Nano, 2015, 9(4): 3887-3895. [40] DUPENNE D, LONJON A, DANTRAS E, et al. Carbon fiber reinforced polymer metallization via a conductive silver nanowires polyurethane coating for electromagnetic shielding[J]. Journal of Applied Polymer Science, 2021, 138(14): 50146. [41] LIU Q, YI C, CHEN J, et al. Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas[J]. Composites Part B: Engineering, 2021, 215: 108752. [42] VALERINI D, TAMMARO L, VITALI R, et al. Sputter-deposited Ag nanoparticles on electrospun PCL scaffolds: Morphology, wettability and antibacterial activity[J]. Coatings, 2021, 11(3): 345. [43] 孙显强,刘凡,赵树元,等.静电纺PEDOT:PSS/PAN纳米纤维包芯纱超级电容器电极材料的制备[J].上海纺织科技,2018,46(11):35-37,62. SUN Xianqiang, LIU Fan, ZHAO Shuyuan, et al.Preparation of electrospum PEDOT: PSS/PAN nano fiber core-spun yarn supercapacitor electrode[J]. Shanghai Textile Science & Technology, 2018, 46(11): 35-37, 62. [44] YAN T, Wang Z, Wang Y, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143: 214-223. [45] SOURI H, BHATTACHARYYA B. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials & Design, 2018, 154: 217-227. [46] TANG Z, JIA S, WANG F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6624-6635. [47] WANG R, ZHAI Q, AN T, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat[J]. Talanta, 2021, 222: 121484. [48] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4270. [49] 刘永坤,姚菊明,卢秋玲,等.碳纤维基柔性超级电容器电极材料的应用进展[J].储能科学与技术,2019,8(1):47-57. LIU Yongkun, YAO Juming, LU Qiuling, et al. Progress in carbon fibers based flexible electrodes for supercapacitors[J]. Energy Storage Science and Technology,2019, 8(1): 47-57. [50] CAI Z, LI L, REN J, et al. Flexible, wearable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J]. Journal of Materials Chemistry A, 2013, 1 (2): 258-261. [51] PU X, LI L X, LIU M, et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials, 2016, 28(1): 98-105. [52] ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2): 254-265. [53] HUANG L, LIN S, Xu Z, et al. Fiber-based energy conversion devices for human-body energy harvesting[J]. Advanced Materials, 2020, 32(5): 1902034. [54] MOKHTARI F, FOROUGHI J, ZHENG T, et al. Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies[J]. Journal of Materials Chemistry A, 2019, 7(14): 8245-57. [55] YU A, PU X, WEN R M, et al. Core shell yarn based triboelectric nanogenerator textiles as powe cloths[J]. ACS Nano, 2017, 11(11): 12764-12771. [56] CHEN X, XIONG J, PARIDA K, et al. Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting[J]. Nano Energy, 2019, 64: 103904. [57] DING T, CHAN K H, ZHOU Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics[J]. Nature Communications, 2020, 11(1): 1-8. [58] SUN Z, FENF L, XIONG C, et al. Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator[J]. Journal of Materials Chemistry A, 2021, 9(11): 7085-7093. [59] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245. |