[1] WANG J L, LU C H, ZHANG K. Textile-based strain sensor for human motion detection[J]. Energy & Environmental Materials, 2020, 3(1): 80-100. [2] SOURI H, BANERJEE H, JUSUFI A, et al. Wearable and stretchable strain sensors: Materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems, 2020, 2(8): 202000039. [3] LIU H, LI Q M, ZHANG S D, et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review[J]. Journal of Materials Chemistry C, 2018, 6(45): 12121-12141. [4] ZHANG X P, LIN H J, SHANG H, et al. Recent advances in functional fiber electronics[J]. SusMat, 2021, 1(1): 105-126. [5] LUO S D, LIU T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors[J]. Advanced Materials, 2013, 25(39): 5650-5657. [6] LEE J, SHIN S, LEE S, et al. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics[J]. ACS Nano, 2018, 12(5): 4259-4268. [7] WANG Z F, HUANG Y, SUN J F, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24837-24843. [8] HAO B, MU L, MA Q, et al. Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks[J]. Composites Science and Technology, 2018, 163: 162-170. [9] LIU X, TANG C, DU X H, et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments[J]. Materials Horizons, 2017, 4(3): 477-486. [10] YANG S Y, WANG Y F, YUE Y, et al. Flexible polyester yarn/Au/conductive metal-organic framework composites for yarn-shaped supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 847:113218. [11] WU S Y, PENG S H, YU Y Y, et al. Strategies for designing stretchable strain sensors and conductors[J]. Advanced Materials Technologies, 2020, 5(2): 1900908. [12] GE G, HUANG W, SHAO J J, et al. Recent progress of flexible and wearable strain sensors for human-motion monitoring[J]. Journal of Semiconductors, 2018, 39(1): 011012. [13] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698. [14] 陈娟,盛斌,陈上碧,等.同轴湿纺炭黑-硅胶复合内涂层柔性纤维应变传感器[J].传感器与微系统,2021,40(4):4-7. CHEN Juan, SHENG Bin, CHEN Shangbi, et al. Coaxial wet spinning carbon black-silica gel composite inner coating flexible fiber strain sensor[J]. Transducer and Microsystem Technologies, 2021, 40(4): 4-7. [15] YUE X Y, JIA Y Y, WANG X Z, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring[J]. Composites Science and Technology, 2020, 189: 108038. [16] MATTANN C, CLEMENS F, TRÖSTER G. Sensor for measuring strain in textile[J]. Sensors (Basel, Switzerland), 2008, 8(6): 3719-3732. [17] BAUTISTA-QUIJANO J R, PÖTSCHKE P, BRÜNIG H et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. [18] WANG X Z, SUN H L, YUE X Y, et al. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring[J]. Composites Science and Technology, 2018, 168: 126-132. [19] TANG Z H, JIA S H, WANG F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6624-6635. [20] SEYEDIN M Z, Razal J M, Innis P C, et al. Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials, 2014, 24(20): 2957-2966. [21] YOU X, YANG J S, WANG M M, et al. Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion[J]. 2D Materials, 2019, 7(1): 015025. [22] 赵红,蔡再生.化学镀镍可拉伸导电纱线的制备及性能研究[J].产业用纺织品,2020,38(11):45-52. ZHAO Hong, CAI Zaisheng. Preparation and properties of electroless nickel-plated conductive yarn[J]. Technical Textiles, 2020, 38(11): 45-52. [23] QURESHI Y, TARFAOUI M, LAFDI K K, et al. Development of microscale flexible nylon/Ag strain sensor wire for real-time monitoring and damage detection in composite structures subjected to three-point bend test[J]. Composites Science and Technology, 2019, 181: 107693. [24] CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies, 2016, 1(7): 1600136. [25] Li X T, Hua T, Xu B G. Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core[J]. Carbon, 2017, 118: 686-698. [26] 贾可,刘宁娟,刘玮.新型碳纳米管膜卷纱的力学及传感性能[J].现代纺织技术,2021,29(5):8-12. JIA Ke, LIU Ningjuan, LIU Wei. Mechanical and sensing properties of PEDOT:PSS/CNT film twisted yarns[J]. Advanced Textile Technology, 2021, 29(5): 8-12. [27] ZHANG M C, WANG C Y, WANG Q, et al. Sheath-core graphite/silk fiber made by dry-Meyer-rod-coating for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20894-20899. [28] ZHONG W B, LIU C, XIANG C X, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpene-trating Ag nanowires/polyolefin elastomer nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42058-42066. [29] DING L, XUAN S H, FENG J B, et al. Magnetic/conductive composite fibre: A multifunctional strain sensor with magnetically driven property[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 97-105. [30] PAN J J, YANG M Y, LUO L, et al. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7338-7348. [31] HONG J H, HAN X, SHI H P, et al. Preparation of conductive silk fibroin yarns coated with polyaniline using an improved method based on in situ polymerization[J]. Synthetic Metals, 2018, 235: 89-96. [32] ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors for facile fabric integration without compromise of wearability[J]. Advanced Materials Technologies, 2019, 4(10): 1900485. [33] NAKAMURA A, HAMANISHI T, KAWAKAMI S, et al. A piezo-resistive graphene strain sensor with a hollow cylindrical geometry[J]. Materials Science and Engineering: B, 2017, 219: 20-27. [34] CHENG Y, WANG R R, SUN J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion[J]. Advanced Materials, 2015, 27(45): 7365-7371. [35] PAN J J, HAO B W, SONG W F, et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn[J]. Composites Part B:Engineering, 2020, 183: 107683. [36] DUAN Z H, JIANG Y D, WANG S, et al. Inspiration from daily goods: A low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17474-17481. [37] SUN H L, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 36052-36062. [38] WANG J P, XUE P, TAO X M. Strain sensing behavior of electrically conductive fibers under large deformation[J]. Materials Science and Engineering A, 2011, 528(6): 2863–2869. [39] 张鲁燕,杨莹莹,侍康妮,等.不锈钢丝/桑蚕丝复合导电纱的制备与性能研究[J].丝绸,2019,56(3):1-6. ZHANG Luyan, YANG Yingying SHI Kangni, et al. Study on preparation and properties of stainless steel wire/silk composite conductive yarn[J]. Journal of Silk, 2019, 56(3): 1-6. [40] 吴颖欣,胡铖烨,周筱雅,等.柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J].纺织学报,2020,41(4):21-25. WU Yingxin, HU Chengye, ZHOU Xiaoya, et al. Srain sensing property of flexible wearable spandex/polyaniline/polyurethane composites[J]. Journal of Textile Research, 2020, 41(4): 21-25. [41] 万山秀,王红艳,杨庆生.碳纳米管纤维及其传感器力电性能实验研究[J].应用力学学报,2020,37(2):655-660. WAN Shanxiu, WANG Hongyan, YANG Qingsheng. Experimental research on the mechanical and electrical properties of carbon nanotube fiber and its sensors[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 655-660. [42] 魏阿静,李运涛,马忠雷.柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维[J].复合材料学报,2020,37(8):2045-2054. WEI Ajing, LI Yuntao, MA Zhonglei. Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers[J]. Acta Materiae Composite Sinica, 2020, 37(8): 2045-2054. [43] KIM S W, KWON S N, NA S I. Stretchable and electrically conductive polyurethane-silver/graphene composite fibers prepared by wet-spinning process[J]. Composites Part B: Engineering, 2019, 167: 573-581. [44] SOURI H, BHATTACHARYYA D. Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity[J]. Sensors and Actuators A: Physical, 2019, 285: 142-148. [45] SOURI H, BHATTACHARYYA D. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials & Design, 2018, 154: 217-227. [46] 谢晓旭,王彦,诸静,等.基于夹心结构的碳纳米管/石墨烯复合柔性导电纤维的制备及其应用[J].现代化工,2020,40(10):188-192. XIE Xiaoxu, WANG Yan, ZHU Jing, et al. Preparation and application of carbon nanotube/graphene composite flexible conductive fiber based on sandwich structure[J]. Modern Chemical Industry, 2020, 40(10): 188-192. [47] XIE X X, HUANG H, ZHU J, et al. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105932. [48] LUO G F, XIE L L, HE M, et al. Flexible fabric gas sensors based on reduced graphene-polyaniline nano-composite for highly sensitive NH3 detection at room temperature[J]. Nanotechnology, 2021, 32(30): 305501. [49] 温泽明,代国亮,陈剑英,等.液态金属涂覆的弹性导电纱线的制备及性能[J].北京服装学院学报(自然科学版),2020,40(3):9-14. WEN Zeming, DAI Guoliang, CHEN Jianying, et al. Preparation and properties of elastic conductive yarn coated by liquid metal[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2020, 40(3): 9-14. [50] CAO M H, WANG M Q, LI L, et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire[J]. Nano Energy, 2018, 50: 528-535. [51] QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. [52] 蒋连意,姚雪烽,邢慧娇,等.石墨烯银层层组装纯棉导电纱及性能分析[J].棉纺织技术,2019,47(7):26-30. JIANG Lianyi, YAO Xuefeng, XING Huijiao, et al. Manufacture of graphene silver layer-by-layer assembled pure cotton conductive yarn and its property analyses[J]. Cotton Textile Technology, 2019, 47(7): 26-30. [53] LI X T, HU H B, HUA T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research, 2018, 11(11): 5799-5811. [54] YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143: 214-223. [55] SMITH R E, TOTTI S, VELLIOU E, et al. Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology[J]. Sensors and Actuators B: Chemical, 2019, 287: 338-345. [56] HUANG Y, ZHAO Y, WANG Y, et al. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions[J]. Smart Materials and Structures, 2018, 27(3): 035013. [57] YAN T, WU Y T, YI W, et al. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327: 112755. [58] LI H, DU Z. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocom-posite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45930-45938. [59] 宋非,陈烨,柯福佑,等.石墨烯/碳纳米管涂层导电氨纶的制备及其性能研究[J].合成纤维工业,2020,43(1):1-6. SONG Fei, CHEN Ye, KE Fuyou, et al. Preparation and properties of graphene and carbon nanotubes alternately coated conductive spandex[J]. China Synthetic Fiber Industry, 2020, 43(1): 1-6. |