[1] HE Q, LIU Y, YANG N N, et al. Current status of transcatheter arterial chemoembolization for hepatocellular carcinoma[J]. Acta Medica Mediterranea, 2018,34:531. [2] XIE F, ZANG J J, GUO X J, et al. Comparison of transcatheter arterial chemoembolization and microsphere embolization for treatment of unresectable hepatocellular carcinoma: A meta-analysis[J]. J Cancer Res Clin Oncol, 2012, 138: 455-462. [3] LEE S H, LIN C Y, HSU Y C, et al. Comparison of the efficacy of two microsphere embolic agents for transcatheter arterial chemoembolization in hepatocellular carcinoma patients[J]. Cancer Res Treat, 2020, 52(1): 24-30. [4] CHEN Y P, ZHANG J L, ZOU Y, et al. Recent advances on polymeric beads or hydrogels as embolization agents for improved transcatheter arterial chemoembolization (TACE)[J]. Frontiers in Chemistry, 2019, 7: 408. [5] IERARDI A M, PESAPANE F, HÖRER T, et al. Embolization and its limits: Tips and tricks[J]. Journal of Endovascular Resuscitation and Trauma Management, 2019, 3(3): 120-130. [6] SOMMER C M, DO T D, SCHLETT C L, et al. In vivo characterization of a new type of biodegradable starch microsphere for transarterial embolization[J]. Journal of Biomaterials Applications, 2017, 0(0): 1-13. [7] PAN C T, YU R S, YANG C J, et al. Sustained-release and pH-adjusted alginate microspheres-encapsulated doxo-rubicin inhibit the viabilities in hepatocellular carcinoma-derived cells[J]. Pharmaceutics, 2021, 13: 1417. [8] WENG L H, LE H C, TALAIE R, et al. Bioresorbable hydrogel microspheres for transcatheter embolization: Preparation and in vitro evaluation[J]. Journal of Vascular and Interventional Radiology, 2011, 22(10): 1464-1470. [9] SEO K D, KIM D S. Microfluidic synthesis of thermo-responsive poly (N-isopropylacrylamide)-poly (ethylene glycol) diacrylate microhydrogels as chemo-embolic microspheres[J]. Journal of Micromechanics and Micro-engineering, 2014, 24(8): 085001. [10] HOU F L, ZHU Y H, ZOU Q, et al. One-step preparation of multifunctional alginate microspheres loaded with in situ-formed gold nanostars as a photo-thermal agent[J]. Materials Chemistry Frontiers, 2019, 3(10): 2018-2024. [11] AONO H, NAOHARA T, MAEHARA T, et al. Preparation of MgFe2O4 microsphere using spray dryer for embolization therapy application[J]. Journal of the Ceramic Society of Japan, 2010, 118(12): 1207-1211. [12] MAO J S, TANG S S, HONG D, et al. Therapeutic efficacy of novel microwave-sensitized mPEG-PLGA@ZrO2@(DOX+ILS) drug-loaded microspheres in rabbit VX2 liver tumours[J]. Nanoscale, 2017, 9(10): 3429-3439. [13] WANG W H, WEI Z Y, SANG L, et al. Development of X-ray opaque poly (lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres[J]. European Polymer Journal, 2018, 108: 337-347. [14] LIU L, LIANG X X, XU X X, et al. Magnetic meso-porous embolic microspheres in transcatheter arterial chemoembolization for liver cancer[J]. Acta Biomate-rialia, 2021, 130: 374-384. [15] WANG D W, WU Q R, GUO R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization[J]. Nanoscale, 2021, 13(19): 8817-8836. [16] PANG F W, LI Y H, ZHANG W J, et al. Biodegradable 131 iodine-labeled microspheres: Potential transarterial radioembolization biomaterial for primary hepatocellular carcinoma treatment[J]. Advanced Healthcare Materials, 2020, 9(13): 2000028. [17] POURSAID A, JENSEN M M, HUO E, et al. Polymeric materials for embolic and chemoembolic applications[J]. Journal of Controlled Release, 2016, 240: 414-433. [18] HAN S L, ZHANG X P, LI M Q. Progress in research and application of PLGA embolic microspheres[J]. Frontiers in Bioscience, 2016, 21: 931-940. [19] ZHANG G Y, ZHOU X F, ZHOU X Y, et al. Effect of alginate-chitosan sustained release microcapsules for transhepatic arterial embolization in VX2 rabbit liver cancer model[J]. J Biomed Mater Res Part A, 2013, 101A: 3192-3200. [20] ZHANG L P, LIU M, QI T, et al. Preparations and properties of drug-eluting embolization microspheres based on modified gelatin[J]. Soft Materials, 2018, 16(2): 117-125. [21] KUNDU B, KURLAND N E, BANO S, et al. Silk proteins for biomedical applications: Bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39: 251-267. [22] QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesos-copic engineering principles[J]. Small, 2019, 15(51): 1903948. [23] HU J J, ALBADAWI H, ZHANG Z F, et al. Silk embolic material for catheter-directed endovascular drug delivery[J]. Advanced Materials, 2022, 34(2): 2106865. [24] CHEN G B, WEI R N, HUANG X, et al. Synthesis and assessment of sodium alginate-modified silk fibroin micros-pheres as potential hepatic arterial embolization agent[J]. International Journal of Biological Macromolecules, 2020, 155: 1450-1459. [25] DOUCET J, KIRI L, O'CONNELL K, et al. Advances in degradable embolic microspheres: A state of the art review[J]. Journal of Functional Biomaterials, 2018, 9(1): 14. [26] RONG J J, LIANG M, XUAN F Q, et al. Alginatecal-cium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization[J]. International Journal of Biological Macromolecules, 2015, 75: 479-488. [27] FORSTER R E J, THüRMER F, WALLRAPP C, et al. Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolisation[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(7): 2243-2251. [28] WANG J, LI J B, REN J. Surface modification of poly (lactic-co-glycolic acid) microspheres with enhanced hydrophilicity and dispersibility for arterial embolization[J]. Materials, 2019, 12(12): 1959. [29] LIANG Y J, YU H, FENG G D, et al. High-performance poly (lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsification for transca-theter arterial embolization and magnetic ablation in VX2 liver tumors[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43478-43489. [30] LU S T, JUN Z, LI M Q, et al. Improved liquid phase separation processes for generating biodegradable micros-pheres loaded with high concentrations of drugs for tumor embolization[J]. Polymer-Plastics Technology and Materials, 2019, 58(9): 1005-1012. [31] ZHANG K, YANG P P, HE P P, et al. Peptide-based nanoparticles mimic fibrillogenesis of laminin in tumor vessels for precise embolization[J]. ACS nano, 2020, 14(6): 7170-7180. [32] WEI Y S, LIAO R F, MAHMOOD A A, et al. pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent[J]. Acta Biomaterialia, 2017, 55: 194-203. [33] LU D D, CHEN M S, YU L L, et al. Smart-polypeptide-coated mesoporous Fe3O4 nanoparticles: Non-interventional target-embolization/thermal ablation and multimodal imaging combination theranostics for solid tumors[J]. Nano Letters, 2021, 21(24): 10267-10278. [34] LU D D, WANG J C, LI Y F, et al. Tumor noninvasive and target embolization therapy platform by intravenous injection based on acidic microenvironment-responsive hyperbranched poly (amino acid)s[J]. ACS Central Science, 2020, 6(11): 1977-1986. [35] VAN ELK M, OZBAKIR B, BARTEN-RIJBROEK A D, et al. Alginate microspheres containing temperature sensitive liposomes (TSL) for MR-guided embolization and triggered release of doxorubicin[J]. PLoS One, 2015, 10(11): e0141626. [36] MAKARY M S, RAMSELL S, MILLER E, et al. Hepatocellular carcinoma locoregional therapies: Outcomes and future horizons[J]. World Journal of Gastroenterology, 2021, 27(43): 7462. [37] LEWIS A R, PADULA C A, MCKINNEY J M, et al. Ablation plus transarterial embolic therapy for hepato-cellular carcinoma larger than 3 cm: Science, evidence, and future directions[C]. Thieme Medical Publishers, 2019, 36(4): 303. [38] LU D D, YU L L, CHEN Z P, et al. A simple and efficient embolization-combined therapy for solid tumors by smart poly (amino acid)s nanocomposites[J]. ACS Applied Bio Materials, 2022, 5: 661-674. [39] JOHNSON C G, TANG Y, BECK A, et al. Preparation of radiopaque drug-eluting beads for transcatheter chemo-embolization[J]. Journal of Vascular and Interventional Radiology, 2016, 27(1): 117-126. [40] SANG L, LUO D D, WEI Z Y, et al. X-ray visible and doxorubicin-loaded beads based on inherently radiopaque poly (lactic acid)-polyurethane for chemo-embolization therapy[J]. Materials Science and Engineering: C, 2017, 75: 1389-1398. [41] OERLEMANS C, SEEVINCK P R, VAN DE MAAT G H, et al. Alginate-lanthanide microspheres for MRI-guided embolotherapy[J]. Acta Biomaterialia, 2013, 9(1): 4681-4687. [42] LIU K L, JIN Z C, HU X L, et al. A biodegradable multifunctional porous microsphere composed of carra-geenan for promoting imageable trans-arterial chemoembo-lization[J]. International Journal of Biological Macromo-lecules, 2020, 142: 866-878. [43] EDELINE J, GILABERT M, GARIN E, et al. Yttrium-90 microsphere radioembolization for hepatocellular carcinoma[J]. Liver Cancer, 2015, 4(1): 16-25. [44] MOLVAR C, LEWANDOWSKI R. Yttrium-90 radio-embolization of hepatocellular carcinoma-performance, technical advances, and future concepts[C]. Thieme Medical Publishers, 2015, 32(4): 388-397. [45] DE LA VEGA J C, ESQUINAS P L, RODRíGUEZ-RODRíGUEZ C, et al. Radioembolization of hepato-cellular carcinoma with built-in dosimetry: First in vivo results with uniformly-sized, biodegradable microspheres labeled with 188Re[J]. Theranostics, 2019, 9(3): 868. |