Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (6): 241-254.
Previous Articles Next Articles
Online:
2023-11-10
Published:
2023-11-17
作者简介:
谢金林(2000―),女,湖北荆门人,硕士研究生,主要从事导电材料与智能穿戴方面的研究。
基金资助:
CLC Number:
XIE Jinlin, ZHANG Jing, GUO Yuxing, ZHAO Zhihui, QIU Hua, GU Peng, . Application progress of conductive fibers in the application of new textiles[J]. Advanced Textile Technology, 2023, 31(6): 241-254.
谢金林, 张 京, 郭宇星, 赵志慧, 邱 华, 顾 鹏. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254.
[1]邢声远. 纤维辞典[M]. 北京: 化学工业出版社, 2007: 32. XING Shengyuan. Fiber Dictionary[M]. Beijing: Chemical Industry Press, 2007: 32. [2]SHAO G W, YU R, ZHANG X, et al. Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers[J]. Advanced Functional Materials, 2020, 30(35): 2003153. [3]陈东, 周秀玲. 不锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008, 36(7): 16-19. CHEN Dong, ZHOU Xiuling. Study on draft-cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008, 36(7): 16-19. [4]SCHMIDT E, HASAN M M B, ABDKADER A, et al. Development of a process chain for the production of high-performance 100% metal spun yarns based on planed metal staple fibres[J]. SN Applied Sciences, 2020, 2(8): 1-17. [5]田明伟, 张高晶, 曲丽君, 等. 导电纤维及其传感器在可穿戴智能纺织品领域的应用[J]. 纺织高校基础科学学报, 2021, 3(3): 51-59. TIAN Mingwei, ZHANG Gaojing, QU Lijun, et al. The application of conductive fibers and its flexible sensors in wearable intelligent textiles field[J]. Basic Sciences Journal of Textile Universities, 2021, 34(3): 51-59. [6]翟娅茹, 沈兰萍. 导电纺织品的研究现状及展望[J]. 棉纺织技术, 2019, 47(2): 81-84. ZHAI Yaru, SHEN Lanping. Research status and prospect of conductive textiles[J]. Cotton Textile Technology, 2019, 47(2): 81-84. [7]赵菊梅, 周彬. 防静电纤维及其应用现状[J]. 纺织科技进展, 2009(5): 38-39. ZHAO Jumei, ZHOU Bin. Anti-static fiber and its application status[J]. Progress in Textile Science & Technology, 2009(5): 38-39. [8]陈爱华, 王海侨, 赵彬, 等. Fe3O4/聚吡咯复合材料的制备及表征[J]. 复合材料学报, 2004, 21(2): 157-160. CHEN Aihua, WANG Haiqiao, ZHAO Bin, et al. Preparation and characterization of Fe3O4/polypyrrole(PPy) composites[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 157-160. [9]舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394. SHU Xin, LI Zhaoxiang, XIA Jiangbin. Method for synthesizing polythiophene[J]. Progress In Chemistry, 2015, 27(4): 385-394. [10]张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35(10): 2234-2238. ZHANG Yue, WANG Guangjin, PAN Mu. Fast Electropolymerization of Polyaniline Nanofibers on Carbon Paper[J]. Chemical Journal of Chinese Universities, 2014, 35(10): 2234-2238. [11]费洋, 金磊, 宋宏伟, 等. 聚苯胺电极的电导率[J]. 功能高分子学报, 2016, 29(2): 213-219. FEI Yang, JIN Lei, SONG Hongwei, et al. Electric Conductivity of polyaniline electrode[J]. Journal of Founctional Polymers, 2016, 29(2): 213-219. [12]李瑶, 陈婷婷, 杨旭东. 纺织用导电纤维及其应用[J]. 产业用纺织品, 2010, 28(4): 32-35. LI Yao, CHEN Tingting, YANG Xudong. Conductive fibers for textile and its applications[J]. Technical Textiles, 2010, 28(4): 32-35. [13]GREGORY R V, KIMBRELL W C, KUHN H H. Conductive textiles[J]. Synthetic Metals, 1989, 28(1/2): 823-835. [14]FOITZIK R C, KAYNAK A, PFEFFER F M. Application of soluble poly (3-alkylpyrole)polymers on textiles[J]. Synthetic Metals, 2006, 156(7): 637-642. [15]TANG B, SUN L, KAUR J, et al. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics[J]. Dyes and Pigments, 2014, 103: 183-190. [16]WANG J F, HUANG S, LU X, et al. Wet-spinning of highly conductive nanocellulose–silver fibers[J]. Journal of Materials Chemistry C, 2017, 5(37), 9673-9679. [17]ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose nanofiber @conductive metal-organic frameworks for high-performance flexible supercapacitors[J]. ACS Nano, 2019, 13(8): 9578-9586. [18]ZHANG H Y, JI H, CHEN J Y, et al. A multi-scale MXene coating method for preparing washable conductive cotton yarn and fabric[J]. Industrial Crops and Products, 2022, 188: 115653. [19]ROHANI SHIRVAN A, NOURI A, SUTTI A. A perspective on the wet spinning process and its advancements in biomedical sciences[J]. European Polymer Journal, 2022, 181: 111681. [20]朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles[J]. Advanced Textile Technology, 2022, 30(4):1-11. [21]薛超, 朱浩, 杨晓川, 等. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(7): 29-35. XUE Chao, ZHU Chao. YANG Xiaochuan, et al. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers[J]. Journal of Textile Research, 2022, 43(7): 29-35. [22]陈子阳, 潘志娟. 微流控纺丝及其在生物质纤维开发中的应用[J]. 现代丝绸科学与技术, 2019, 34(4): 33-37. CHEN Ziyang, PAN Zhijuan. Microfluidic spinning and its application in the development of biomass fibers[J]. Modern Silk Science & Technology, 2019, 34(4): 33-37. [23]SRIVASTAVA Y, MARQUEZ M, THORSEN T. Multijet electrospinning of conducting nanofibers from microfluidic manifolds[J]. Journal of Applied Polymer Science, 2007, 106(5): 3171-3178. [24]YOON K, KIM K, WANG X F, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer, 2006, 47(7): 2434-2441. [25]ZHOU T, NIU Y T, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021, 203: 109557. [26]HOU P X, ZHANG F, ZHANG L L, et al, Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications (adv. funct. mater. 11/2022)[J]. Advanced Functional Materials, 2022, 32(11): 2270066. [27]Cho H, Tabata I, Hisada K, et al. Characterization of copper-plated conductive fibers after pretreatment with supercritical carbon dioxide and surface modification using Lyocell fiber[J]. Textile Research Journal, 2013, 83(8): 780-793. [28]郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016(9): 143-144. ZHENG Shaoming, LAI Xianghui, LIN Benshu. Development and application of conductive fibers[J]. China Fiber Inspection, 2016(9): 143-144. [29]范洁. 聚苯胺接枝共聚改性聚乙烯醇复合导电材料的制备、微观形貌及性能[D]. 西安: 陕西科技大学, 2016: 43-67. FAN Jie. Preparation、Micromorphology and Properties of Polyaniline graft Copolymerization Modified Polyvinyl Alcohol Conductive Composites[D]. Xi’an: Shanxi University of Science and Technology, 2016: 43-67. [30]韩朝锋, 黄真, 庄昌明, 等. 导电纤维的专利技术分布[J]. 科技信息, 2017(4): 168-169. HAN Chaofeng, HUANG Zhen, ZHUANG Changming, et al. Patented technology distribution of conductive fibers[J]. Science & Technology Information, 2017(4): 168-169. [31]林东, 官建国. 金属纤维阵列的制备技术[J]. 材料科学与工艺, 2008, 16(3): 392-396. LIN Dong, GUAN Jianguo. Preparation techniques of metal fibers arrays[J]. Materials Science & Technology, 2008, 16(3): 392-396. [32]刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83. LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. [33]MARION J S, GUPTA N, CHEUNG H, et al. Thermally drawn highly conductive fibers with controlled elasticity[J]. Advanced Materials, 2022, 34(19): 2201081. [34]董俊霞, 杨志捧. 抗静电织物的设计与开发[J]. 棉纺织技术, 2007, 35(5): 57-59. DONG Junxia, YANG Zhipeng. Design and development of antistatic fabric[J]. Cotton Textile Technology, 2007, 35(5): 57-59. [35]梁列峰, 赵晓, 李奇菊. 抗静电纤维和织物的成型原理及制备技术[J]. 纤维素科学与技术, 2006, 14(2): 65-70. LIANG Liefeng, ZHAO Xiao, LI Qiju. Principle and preparation technique of antistatic fiber and textile[J]. Journal of Cellulose Science and Technology, 2006, 14(2): 65-70. [36]伏广伟, 王瑞, 倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(6): 34-38. FU Guangwei, WANG Rui, NI Yuting. Conductive and antistatic property of yarns blended with organic conductive staple fibers[J]. Journal of Textile Research, 2009, 30(6): 34-38. [37]南燕, 张燕, 施楣梧. 用非金属导电纤维开发纯涤纶抗静电织物[J]. 纺织学报, 2001, 22(2): 4-6,9. NAN Yan, ZHANG Yan, SHI Meiwu. The development of polyster antistatic fabric by non-metal conductive fiber[J]. Journal of Textile Research, 2001, 22(2): 4-6,9. [38]林燕燕, 陈玉香, 张莲莲, 等. 嵌织式涤纶抗静电织物设计与性能分析[J]. 现代纺织技术, 2018, 26(6): 43-46. LIN Yanyan, CHEN Yuxiang, ZHANG Lianlian, et al. Design and performance analysis of mosaic polyester antistatic fabric[J]. Advanced Textile Technology, 2018, 26(6): 43-46. [39]XU C C, FANG L, YU M M, et al. Enhancing anti-static performance of fibers by construction of the hybrid conductive network structure on the fiber surface[J].Polymers, 2021, 13(14): 2248. [40]MISHRA M, SINGH A P, DHAWAN S K. Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution[J]. Journal of Alloys and Compounds, 2013, 557: 244-251. [41]XIONG J H, ZHANG H W, DING R J, et al. Multifunctional non-woven fabrics based on interfused MXene fibers[J]. Materials & Design, 2022, 223: 111207. [42]WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7): 1806819. [43]LIU L X, CHEN W, ZHANG H B, et al. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency[J]. Nano-Micro Letters, 2022, 14(1): 111. [44]QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. [45]XU L L, LIU Z K, ZHAI H, et al. Moisture-resilient graphene-dyed wool fabric for strain sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13265-13274. [46]ZHANG L, HE J, LIAO Y S, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26631-26640. [47]LI Q M, YIN R, ZHANG D B, et al. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors[J]. Journal of Materials Chemistry A, 2020, 8(40): 21131-21141. [48]LIU H, LI Q M, BU Y B, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy, 2019, 66: 104143. [49]HAN S T, PENG H Y, SUN Q J, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 29(33): 1700375. [50]LIU M, ZHANG S S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105612. [51]DEKA B K, HAZARIKA A, KIM J, et al. Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring[J]. Carbon, 2019, 152: 376-387. [52]MA Q, HAO B, MA P C. Modulating the sensitivity of a flexible sensor using conductive glass fiber with a controlled structure profile[J]. Composites Communications, 2020, 20: 100367. [53]FU Y F, LI Y Q, LIU Y F, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35503-35509. |
[1] | WANG Jianing, SI Suqiu, ZHENG Xingyi, LIU Wei. Effects of carbon nanotube mass fraction on electromagnetic shielding properties of nano-aramid composite aerogel fibers [J]. Advanced Textile Technology, 2024, 32(1): 64-72. |
[2] | LI Dongliang, LIU Huiying, LI Lele, SUN Baojie, JIANG Liang, ZHOU Yanfen, CHEN Shaojuan, MA Jianwei. Preparation and properties of SBS/CNTs elastic conductive composite fiber [J]. Advanced Textile Technology, 2023, 31(3): 121-127. |
[3] | YU Meiya, RAHMATULLOEV Kishvar, MAO Lijuan, WU Jingjin, SHEN Guojian, ZOU Zhuanyong. Synthesis of the anionic antistatic agent and its property research [J]. Advanced Textile Technology, 2023, 31(2): 177-. |
[4] | SU Jing, LAN Chuntao, WANG Jing, GUAN Yu, FU Shaohai. Development and application of textile-based electromagnetic shielding materials [J]. Advanced Textile Technology, 2022, 30(6): 219-230. |
[5] | ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles [J]. Advanced Textile Technology, 2022, 30(4): 1-11. |
[6] | LIU Yaqiong, LI Nan, LI Wen, WANG Lijun. Influence of clothing structure design on electromagnetic shielding effectiveness [J]. Advanced Textile Technology, 2022, 30(4): 193-199. |
[7] | JI Yu, LIU Yuanjun, ZHAO Xiaoming, HOU Shuo. Research status of electromagnetic shielding fabrics [J]. Advanced Textile Technology, 2022, 30(3): 1-12. |
[8] | LIU Na, CHEN Xiangyun, ZHANG Yongfeng, Lü Wenjing, JIAO Zhiying. Research on surface modification and properties of filter material for flue gas purification [J]. Advanced Textile Technology, 2022, 30(1): 162-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||