[1] PARK C I, SEONG M, KIM M A, et al. World's first large size 77-inch transparent flexible OLED display[J]. Journal of the Society for Information Display, 2018, 26(5): 287-295.
[2] LEE S M, KWON J H, KWON S, et al. A review of flexible OLEDs toward highly durable unusual displays[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 1922-1931.
[3] CHO S H, LEE S W, HWANG I, et al. Shape-deformable self-healing electroluminescence displays[J]. Advanced Optical Materials, 2019, 7(3): 1801283.
[4] 楚雪梅, 赵惠, 张秀芹, 等. 电致发光纺织品的制备及应用研究进展[J].北京服装学院学报(自然科学版), 2022, 42(3): 108-116.
CHU Xuemei, ZHAO Hui, ZHANG Xiuqin, et al. Research progress of preparation of electroluminescent textiles and their applications [J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2022, 42(3): 108-116.
[5] SUGIMOTO A, OCHI H, FUJIMURA S, et al. Flexible OLED displays using plastic substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 107-114.
[6] ZHANG D, HUANG T, DUAN L. Emerging self-emissive technologies for flexible displays[J]. Advanced Materials, 2020, 32(15): 1902391.
[7] BAO X, GUAN Y, LI W, et al. Effects of unipolar and bipolar charges on the evolution of triplet excitons in π-conjugated PLED[J]. Journal of Applied Physics, 2023, 134(19): 193902.
[8] YAKOH A, ÁLVAREZ-DIDUK R, CHAILAPAKUL O, et al. Screen-printed electroluminescent lamp modified with graphene oxide as a sensing device[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20775-20782.
[9] ZHAO Y, WANG B, HOJAIJI H, et al. A wearable freestanding electrochemical sensing system[J]. Science Advances, 2020, 6(12): eaaz0007.
[10] SHEPHERD R F, STOKES A A, NUNES R M D, et al. Soft machines that are resistant to puncture and that self seal[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(46): 6709-6713.
[11] TERRYN S, BRANCART J, LEFEBER D, et al. Self-healing soft pneumatic robots [J]. Science Robotics, 2017, 2(9): eaan4268.
[12] 尚超, 杨斌. 光纤发光针织物的侧发光性能研究[J].现代纺织技术, 2014, 22(3): 9-13.
SHANG Chao, YANG Bin. Research on side\|glowing performance of luminous knitted fabrics with optical fiber[J]. Advanced Textile Technology, 2014, 22(3): 9-13.
[13] 张亚南,许冰洁,李梦玮,等.负载聚集诱导发光光敏剂纳米纤维膜的制备及其抗菌性能[J/OL].现代纺织技术, 2024:1-12[2024-06-21]. http://kns.cnki.net/kcms/detail/33.1249.TS.20240412.1343.002.html.
ZHANG Yanan, XU Bingjie, LI Mengwei, et al. Preparation and antibacterial properties of loaded aggregation-induced emission photosensitizers nanofiber mats[J/OL].Advanced Textile Technology, 2024:1-12[2024-06-21]. http://kns.cnki.net/kcms/detail/33.1249.TS.20240412.1343.002.html.
[14] QU C, XU Y, XIAO Y, et al. Multifunctional displays and sensing platforms for the future: a review on flexible alternating current electroluminescence devices[J]. ACS Applied Electronic Materials, 2021, 3(12): 5188-5210.
[15] WANG L, XIAO L, GU H, et al. Advances in alternating current electroluminescent devices[J]. Advanced Optical Materials, 2019, 7(7): 1801154.
[16] TIWARI S, TIWARI S, CHANDRA B P. Characteristics of a.c. electroluminescence in thin film ZnS: Mn display devices[J]. Journal of Materials Science: Materials in Electronics, 2004, 15(9): 569-574.
[17] LI G, SUN F, ZHAO S, et al. Autonomous electroluminescent textile for visual interaction and environmental warning[J]. Nano Letters, 2023, 23(18): 8436-8444.
[18] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
[19] WU Y, MECHAEL S S, LERMA C, et al. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns[J]. Matter, 2020, 2(4): 882-895.
[20] JI D, LIANG W, TENG F, et al. Design and integration of electronic display textiles [J]. Science China Materials, 2023, 66(10): 3782-3794.
[21] ZUO Y, SHI X, ZHOU X, et al. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers[J]. Advanced Functional Materials, 2020, 30(50): 2005200.
[22] YE T, XIU F, CHENG S, et al. Recyclable and flexible dual-mode electronics with light and heat management[J]. ACS Nano, 2020, 14(6): 6707-6714.
[23] LIN Y, YUAN W, DING C, et al. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24074-24085.
[24] BRUBAKER C D, NEWCOME K N, JENNINGS G K, et al. 3D-Printed alternating current electroluminescent devices[J]. Journal of Materials Chemistry C, 2019, 7(19): 5573-5578.
[25] JAYATHILAKA W A D M, CHINNAPPAN A, JI D, et al. Facile and scalable electrospun nanofiber-based alternative current electroluminescence (ACEL) device[J]. ACS Applied Electronic Materials, 2021, 3(1): 267-276.
[26] MARTIN A, FONTECCHIO A. Effect of fabric integration on the physical and optical performance of electroluminescent fibers for lighted textile applications[J]. Fibers, 2018, 6(3): 50.
[27] 卢显丽. 稀土铕发光材料的制备及其性能调控[D]. 郑州: 郑州大学, 2018.
LU Xianli. Preparation and Performance Control of Rare Earth Europium Luminescent Materials[D]. Zhengzhou: Zhengzhou University, 2018.
[28] 梁小琴, 梁梨花, 朱尽顺, 等. ACQ、AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用[J].现代纺织技术, 2024, 32(4): 84-92.
LIANG Xiaoqin, LIANG Lihua, ZHU Jinshun, et al. The luminescent properties of ACQ and AIE polymeric nanoparticles and their applications in inkjet printing[J]. Advanced Textile Technology, 2024, 32(4): 84-92.
[29] JEONG S M, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability[J]. Applied Physics Letters, 2013, 102(5): 051110.
[30] 王现川. 柔性/可拉伸ZnS:Cu电致发光器件的制备与应用研究[D]. 郑州: 郑州大学, 2019.
WANG Xianchuan. Research on Preparation and Application of Flexible/Stretchable ZnS:Cu Electroluminescent Device[D]. Zhengzhou: Zhengzhou University, 2019.
[31] 刘艺彬, 孙志成, 张文官, 等. 柔性无机交流电致发光器件的制备及性能研究[J]. 数字印刷, 2022(5): 105-111.
LIU Yibin, SUN Zhicheng, ZHANG Wenguan, et al. Preparation and performance research of inorganic alternating current electroluminescence[J]. Digital Printing, 2022(5): 105-111.
[32] 齐雯.电致发光复合材料的制备及其光电特性研究[D]. 北京: 华北电力大学, 2023.
QI Wen. Preparation and Photoelectric Characteristic Research of Electroluminescent Composites[D]. Beijing: North China Electric Power University, 2023.
[33] 尹云雷, 郭成, 杨红英, 等. 电子织物在智能可穿戴领域的研究进展[J].现代纺织技术, 2023, 31(1): 1-12.
YIN Yunlei, GUO Cheng, YANG Hongying, et al. Research progress of electronic fabrics in the intelligent wearable field[J].Advanced Textile Technology, 2023, 31(1): 1-12.
[34] 李港华, 吕治家, 韦继超, 等. 基于ZnS材料的纺织基交流电致发光器件研究现状及展望[J].丝绸, 2023, 60(1): 29-39.
LI Ganghua, LÜ Zhijia, WEI Jichao, et al. Research status and prospect of textile-based flexible AC electroluminescent devices based on ZnS materials[J].Journal of Silk, 2023, 60(1): 29-39.
[35] 马飞祥. 基于织物的全印刷大面积交流电致发光器件的研究[D]. 金华: 浙江师范大学, 2020.
MA Feixiang. Fully-printed, Large-size Alternating Current Electroluminescent Device Based on Fabric[D]. Jinhua: Zhejiang Normal University, 2020.
[36] 常瑜. 面向可穿戴电子的自愈合柔性交流电致发光器件研究[D]. 郑州: 郑州大学, 2022.
CHANG Yu. Study on Self-healing Flexible Alternating Current Electroluminescent Devices for Wearable Electronics[D]. Zhengzhou: Zhengzhou University, 2022.
[37] 李港华. 柔性电致发光纱线构筑及其环境刺激光响应性能研究[D]. 青岛: 青岛大学, 2023.
LI Ganghua. Construction of Flexible Electroluminescent Yarn and Its Performance of Light Responding to Environmental Stimuli[D]. Qingdao: Qingdao University, 2023.
[38] 郭雪峰. 发光纤维用纳米铝酸盐发光材料的研究进展[J].现代纺织技术, 2020, 28(1): 21-26.
GUO Xuefeng. Research progress of nanoscale aluminate luminescent materials for luminous fiber[J]. Advanced Textile Technology, 2020, 28(1): 21-26.
[39] AKCELRUD L. Electroluminescent polymers[J]. Progress in Polymer Science, 2003, 28(6): 875-962.
[40] PENG H, LI H, TAO G, et al. Smart textile optoelectronics for human-interfaced logic systems[J]. Advanced Functional Materials, 2024, 34(2): 2308136.
[41] CHEN D, JIANG K, HUANG T, et al. Recent advances in fiber supercapacitors: materials, device configurations, and applications[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(5): 1901806.
[42] XU X, XIE S, ZHANG Y, et al. The Rise of Fiber Electronics[J]. Angew Chem Int Ed Engl, 2019, 58(39): 13643-13653.
[43] DIAS T, MONARAGALA R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination [J]. Textile Research Journal, 2012, 82(11): 1164-1176.
[44] HU D, XU X, MIAO J, et al. A stretchable alternating current electroluminescent fiber[J]. Materials (Basel, Switzerland), 2018, 11(2): 184.
[45] LIANG G, YI M, HU H, et al. Coaxial-structured weavable and wearable electroluminescent fibers[J]. Advanced Electronic Materials, 2017, 3(12): 1700401.
[46] YANG C, CHENG S, YAO X, et al. Ionotronic luminescent fibers, fabrics, and other configurations[J]. Advanced Materials, 2020, 32(47): 2005545.
[47] ZHANG X, LIN H, SHANG H, et al. Recent advances in functional fiber electronics[J]. SusMat, 2021, 1(1): 105-126.
[48] ZHOU Y, WANG C H, LU W, et al. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries[J]. Advanced Materials, 2020, 32(5): 1902779.
[49] 赵世康, 王航, 田明伟. 平行电极式电致发光纱线的构筑成型及其水上救援可穿戴应用[J].现代纺织技术, 2024, 32(4): 45-51.
ZHAO Shikang, WANG Hang, TIAN Mingwei. Construction molding of a parallel electrode electroluminescent yarn and its application in water rescue wearables[J]. Advanced Textile Technology, 2024, 32(4): 45-51.
[50] XU Y, ZHANG Y, GUO Z, et al. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets[J]. Angewandte Chemie, 2015, 54(51): 15390-15394.
[51] YANG C C, LIN S J. Improvement of high-rate capability of alkaline Zn-MnO2 battery[J]. Journal of Power Sources, 2002, 112(1): 174-183.
[52] LEWANDOWSKI A. Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte[J]. Solid State Ionics, 2000, 133(3/4): 265-271.
[53] KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987.
[54] ZHANG Z, CUI L, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018, 30(18): 1800323.
|