[1] 杨定勇,陈莉,殷翔芝,等.抗静电多功能纺织品的开发[J].纺织报告,2019(4):19-22. YANG Dingyong, CHEN Li, YIN Xiangzhi, et al.Development of antistatic multifunctional textiles[J]. TextileReport, 2019(4):19-22. [2] CHEN G, LI Y, BICK M, et al. Smart textiles for electricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720. [3] YETISEN A, QU H, MANBACHI A, et al. Nanotechno-logy in textiles[J]. ACS Nano, 2016, 10(3): 3042-3068. [4] LI S, HUANG J, CHEN Z, et al. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017, 5(1): 31-55. [5] 张雷,向龙玲,郝慧聪,等.TiO2/陶粒光催化降解甲基橙研究[J].环境科学与管理,2011,36(7):99-101. ZHANG Lei, XIANG Longling, HAO Huicong, et al. Photocatalytic degradation of methyl orange by TiO2/ceramsite[J]. Environmental Science and Management, 2011, 36(7): 99-101. [6] 许文涛,于岩,盛瑞,等.GO/TiO2复合催化剂的制备及其光催化降解甲基橙[J].化工时刊,2017,31(1):5-8. XU Wentao, YU Yan, SHENG Rui, et al. Preparation of GO/TiO2 composite catalyst and its photocatalytic degradation of methyl orange [J]. Chemical Times, 2017, 31(1): 5-8. [7] WEN W, WU J M, JIANG Y, et al. Titanium dioxide nanotrees for high-capacity lithium-ion microbatteries[J]. Journal of Materials Chemistry A, 2016, 4(27): 10593-10600. [8] GE M, CAI J, IOCOZZIA J, et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation[J]. International Journal of Hydrogen Energy, 2017, 42(12):8418-8449. [9] GAO S W, HUANG J Y, LI S H, et al. Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water-oil separation and UV-protective properties[J]. Materials & Design, 2017, 128:1-8. [10] YANG M P, LIU W Q, JIANG C, et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J]. Carbohydrate Polymers, 2018, 197(1):75-82. [11] GIESZ P, MACKIEWICZ E, GROBELNY J, et al. Multifunctional hybrid functionalization of cellulose fabrics with AgNWs and TiO2[J]. Carbohydrate Polymers, 2017, 177:397-405. [12] WU J M, SONG X M, YAN M. Alkaline hydrothermal synthesis of homogeneous titania microspheres with urchin-like nanoarchitectures for dye effluent treatments[J]. Journal of Hazardous Materials, 2011, 194:338-344. [13] 谢顺吉,张海坤,刘国栋,等.局部表面等离子体共振可调的MoO3-x-TiO2纳米复合物用于提高可见光下光催化还原CO2的性能[J].催化学报,2020,41(7):1125-1131. XIE Shunji, ZHANG Haikun, LIU Guodong, et al. Localized surface plasmon resonance-tunable MoO3-x-TiO2 nanocomposites for enhanced photocatalytic CO2 reduction under visible light[J]. Chinese Journal of Catalysis, 2020, 41(7): 1125-1131. [14] LI J M, WU T T, GUO M Z, et al. A facile solution route to deposit TiO2 nanowire arrays on arbitrary substrates.[J]. Nanoscale, 2014, 6(6):3046-3050. [15] SUN Z, KIM J H, LIAO T, et al. Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells[J]. Crystengcomm, 2012, 14(17):5472-5478. [16] 刘仁兵,刘朝辉,肖舟,等.TiO2纳米棒阵列的制备及形貌控制[J].现代化工,2019,39(4):108-111,113. LIU Renbing, LIU Zhaohui, XIAO Zhou, et al. Preparation and morphology control of TiO2 nanorod arrays[J]. Modern Chemical Industry, 2019, 39(4): 108-111, 113. [17] 孙凌显,包启富,刘昆,等.氧化铝基板上二氧化钛纳米棒薄膜的形貌及其润湿性的研究[J].中国陶瓷,2020,56(5):27-32. SUN Lingxian, BAO Qifu, LIU Kun, et al. Morphology and wettability of TiO2 nanorod thin films on alumina substrates[J]. China Ceramics, 2020, 56(5): 27-32. [18] HOSONO E, FUJIHARA S, KAKIUCHI K, et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions[J]. Journal of the American Chemical Society, 2004, 126(25):7790-7791. [19] XIANG S, XU S, YUAN G, et al. 3D hierarchical golden wattle-like TiO2 microspheres: Polar acetone-based solvothermal synthesis and enhanced water purification performance[J]. Crystengcomm, 2017, 19(16):2187-2194. [20] FENG X, ZHAI J, JIANG L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angewandte Chemie International Edition, 2005, 44(32): 5115-5118. [21] 陈雪莲,韦萌,潘喜强.金属离子掺杂对金红石型纳米TiO2的稳定性影响[J].兵器材料科学与工程,2020,43(1):1-5. CHEN Xuelian, WEI Meng, PAN Xiqiang. Effect of metal ion doping on the stability of rutile nano-TiO2[J]. Ordnance Materials Science and Engineering, 2020, 43(1): 1-5. [22] THOMS H, EPPLE M, FROBA M, et al. Metal diolates: Useful precursors for tailor-made oxides prepared at low temperatures[J]. Journal of Materials Chemistry, 1998, 8(6): 1447-1451. [23] LI K, HUANG Z, ZENG X, et al. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectroche-mical and photocatalytic properties of TiO2/g-C3N4 heterojunctions[J]. ACS Applied Materials & Interfaces. 2017, 9(13): 11577-11586. |