现代纺织技术 ›› 2023, Vol. 31 ›› Issue (3): 263-273.DOI: 10.12477/xdfzjs.20230329
收稿日期:
2022-08-30
出版日期:
2023-05-10
网络出版日期:
2023-05-26
作者简介:
石峻铭(1998—),男,河南洛阳人,硕士研究生,主要从事肌电监测织物干电极方面的研究。
基金资助:
Received:
2022-08-30
Published:
2023-05-10
Online:
2023-05-26
摘要: 肌电是肌肉神经疾病的重要病理信息,对其长时连续稳定监测是应用关键。首先简要回顾肌电监测的电极种类及工作原理,然后详细概述适合长时连续稳定肌电监测的织物干电极发展现状,从其结构与制备技术、性能表征及评价技术和肌电监测服集成技术3个方面展开,总结分析目前面临的技术局限和未来发展趋势,指出提高织物干电极的应变稳定性以及耐汗性是当前需要突破的技术。
中图分类号:
石峻铭, 孟粉叶, 胡吉永. 长时连续稳定体表肌电监测织物干电极的研究进展[J]. 现代纺织技术, 2023, 31(3): 263-273.
SHI Junminga, b, MENG Fenye , HU Jiyonga, b. Review on fabric dry electrode for long time continuous and stable EMG monitoring on human skin[J]. Advanced Textile Technology, 2023, 31(3): 263-273.
[1]Kouyoumdjian J A, Paiva G P, Stålberg E. Concentric needle jitter in 97 myasthenia gravis patients[J]. Frontiers in Neurology, 2020, 11: 600680. [2]Ginn K A, Cools A, Halaki M. Do surface electrodes validly represent lower trapezius activation patterns during shoulder tasks?[J]. Journal of Electromyography and Kinesiology, 2020, 53: 102427. [3]Yamagami M, Peters K M, Milovanovic I, et al. Assessment of dry epidermal electrodes for long-term electromyography measurements[J]. Sensors, 2018, 18(4): 1269. [4]马帅, 侯世科, 樊毫军, 等. 智能心电信号监测设备研究现状[J]. 医疗卫生装备, 2020, 41(11): 95-99. MA Shuai, HOU Shike, FAN Haojun, et al. Research status of intelligent ECG signal monitoring equipment[J]. Chinese Medical Equipment Journal, 2020, 41(11): 95-99. [5]Reaz M B I, Hussain M S, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications[J]. Biological Procedures Online, 2006, 8(1): 11-35. [6]Gohel V, Mehendale N. Review on electromyography signal acquisition and processing[J]. Biophysical Reviews, 2020, 12(6): 1361-1367. [7]Farina D, Holobar A. Characterization of human motor units from surface EMG decomposition[J]. Proceedings of the IEEE, 2016, 104(2): 353-373. [8]Rezaee K, Savarkar S, Yu X f, et al. A hybrid deep transfer learning-based approach for parkinson's disease classification in surface electromyography signals[J]. Biomedical Signal Processing and Control, 2022,71: 103161. [9]Bashford J, Mills K, Shaw C. The evolving role of surface electromyography in amyotrophic lateral sclerosis: a systematic review[J]. Clinical Neurophysiology, 2020, 131(4): 942-950. [10]Falla D, Gallina A. New insights into pain-related changes in muscle activation revealed by high-density surface electromyography[J]. Journal of Electromyography and Kinesiology, 2020, 52: 102422. [11]Zaman S U, Tao X Y, Cochrane C, et al. Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests[J]. Sensors, 2020, 20(5): 1272. [12]Wang L, Pan Y L, He D D, et al. Conductive polyester fabrics with high washability as electrocardiogram textile electrodes[J]. ACS Applied Polymer Materials, 2022, 4(2): 1440-1447. [13]Kang Z X, He Y Q, Sang J, et al. Superhydrophobic and conductive cotton fabric composite with excellent corrosion resistance for wearable electronics[J]. Advanced Materials Interfaces, 2021, 8(17): 2100651. [14]Yogendra M S, Mallikarjuna Reddy M V, Kartik S N, et al. Development of fabric electrode for bio-potential signal acquisition in wearable health monitoring and effect of perspiration on signal acquisition[J]. Journal of Industrial Textiles, 2021: 52(2):2148S-2162S. [15]Liman M L R, Islam M T, Hossain M M. Mapping the progress in flexible electrodes for wearable electronic textiles: materials, durability, and applications[J]. Advanced Electronic Materials, 2022, 8(1): 2100578. [16]Pani D, Achilli A, Spanu A, et al. Validation of polymer-based screen-printed textile electrodes for surface EMG detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7): 1370-1377. [17]Manjakkal L, Pullanchiyodan A, Yogeswaran N, et al. A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte[J]. Advanced Materials, 2020, 32(24): 1907254. [18]Xu Z Y, Song J Y, Liu B R, et al. A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat[J]. Sensors and Actuators B: Chemical, 2021, 348: 130674. [19]Tseghai G B, Malengier B, Fante K A, et al. Integration of conductive materials with textile structures, an overview[J]. Sensors, 2020, 20(23): 6910. [20]Nigusse A B, Mengistie D A, Malengier B, et al. Wearable smart textiles for long-term electrocardiography monitoring:A review[J]. Sensors, 2021, 21(12): 4174. [21]Ma H, Li J, Zhou J, et al. Screen-printed carbon black/recycled sericin@fabrics for wearable sensors to monitor sweat loss[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11813-11819. [22]Nah J S, Barman S C, Zahed M A, et al. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection[J]. Sensors and Actuators B: Chemical, 2021, 329: 129206. [23]Lin K C, Muthukumar S, Prasad S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat[J]. Talanta, 2020, 214: 120810. [24]Lee S, Kim M O, Kang T, et al. Knit band sensor for myoelectric control of surface EMG-based prosthetic hand[J]. IEEE Sensors Journal, 2018, 18(20): 8578-8586. [25]许润欣, 肖学良, 王志宇, 等. 织物电极在心电监测服装中的研究进展[J]. 产业用纺织品, 2022, 40(2): 1-6. XU Runxin, XIAO Xueliang, WANG Zhiyu, et al. Research progress of fabric electrode in electrocardiogram monitoring clothing[J]. Technical Textiles, 2022, 40 (2): 1-6. [26]Jiang Y L, Sakoda S, Togane M, et al. A highly usable and customizable sEMG sensor for prosthetic limb control using polypyrrole-coated nonwoven fabric sheet[C]// IEEE Sensors. IEEE, 2015: 1-4. [27]刘振, 刘晓霞. 织物电极采集肌电信号的研究进展[J]. 棉纺织技术, 2017, 45 (1) : 80-84. LIU Zhen, LIU Xiaoxia. Research progress of myoelectric signal collecting with fabric electrode[J]. Cotton Textile Technology, 2017, 45 (1) : 80-84. [28]XIAO X L, Pirbhulal S, DONG K, et al. Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring[J]. Journal of Sensors, 2017, 2017: 7539840. [29]叶华标. 穿戴式织物心电电极的制备及性能研究[D]. 郑州: 中原工学院, 2020. YE Huabiao. Research on Preparation and Performance of Wearable Textile ECG Electrodes[D]. Zhengzhou: Zhongyuan University of Technology, 2020 . [30]林璐, 孙吉海, 肖学良. 五枚三飞经面缎纹导电织物电极的心电采集性能[J]. 上海纺织科技, 2021, 49(10): 50-53, 56. LIN Lu, SUN Jihai, XIAO Xueliang. Electrocardiograph acquisition performance of five pattern three flytype of warp-satin woven fabric as conductive electrode[J]. Shanghai Textile Science & Technology, 2021, 49(10): 50-53, 56. [31]杨红英, 叶华标, 周金利, 等. 可穿戴织物心电电极运动伪迹的产生机制与抑制方法[J]. 纺织高校基础科学学报, 2019, 32(2): 126-132. YANG Hongying, YE Huabiao, ZHOU Jinli, et al. The causes and suppression methods of motion artifacts of wearable textile electrocardio-electrodes[J]. Basic Sciences Journal of Textile Universities, 2019, 32 (2): 126-132. [32]Kim H, Kim S, Lim D, et al. Development and characterization of embroidery-based textile electrodes for surface EMG detection[J]. Sensors, 2022, 22(13): 4746. [33]Lee S, Jamil B, Kim S, et al. Fabric vest socket with embroidered electrodes for control of myoelectric prosthesis[J]. Sensors, 2020, 20(4): 1196. [34]Shafti A, Manero R B R, Borg A M, et al. Embroidered electromyography: A systematic design guide[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1472-1480. [35]Ojstršek A, Plohl O, Gorgieva S, et al. Metallisation of textiles and protection of conductive layers: an overview of application techniques[J]. Sensors, 2021, 21(10): 3508. [36]Du Z H, Zhou H, Yu X H, et al. Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125111. [37]Wang Z X, Lowe T, Derby B. Fluid/fiber interactions and the conductivity of inkjet printed Ag on textile substrates[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45516-45524. [38]张赢心, 徐磊, 王大伟, 等. 织物电极在生物电信号监测中的研究进展[J]. 现代纺织技术, 2022, 30(4): 42-49. ZHANG Yingxin, XU Lei, WANG Dawei, et al. Research progress of fabric electrode in bioelectric signal monitoring[J]. Advanced Textile Technology, 2022, 30 (4) : 42-49. [39]Lim T, Zhang H N, Lee S. Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors[J]. APL Materials, 2021, 9(9): 091113. [40]张驰, 魏德健, 曹慧. 用于心电信号采集的织物电极技术的研究进展[J]. 生物医学工程学杂志, 2018, 35(5): 811-816. ZHANG Chi, WEI Dejian, CAO Hui. Research progress on fabric electrode technologies for electrocardiogram signal acquisition[J]. Journal of Biomedical Engineering, 2018, 35 (5) : 811-816. [41]温东伟, 杨昆. 心电检测用织物电极的研究进展[J]. 纺织导报, 2018(3): 72-75. WEN Dongwei, YANG Kun. Research progress of fabric electrodes for ECG detection [J]. China Textile Leader, 2018 (3) : 72-75. [42]Taji B, Shirmohammadi S, Groza V, et al. Impact of skin–electrode interface on electrocardiogram measurements using conductive textile electrodes[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(6): 1412-1422. [43]Xie L, Yang G, Xu L L, et al. Characterization of dry biopotential electrodes[C]//35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013: 1478-1481. [44]宋晋忠, 陈华, 张辉, 等. 织物电极的皮肤-电极接触阻抗测量方法分析[J]. 现代生物医学进展, 2015, 15(24): 4777-4781. SONG Jinzhong, CHEN Hua, ZHANG Hui, et al. Detection methods for skin-electrode contact impedance of textile electrodes[J]. Progress in Modern Biomedicine, 2015, 15 (24) : 4777-4781. [45]Lam E, Alizadeh-Meghrazi M, Schlums A, et al. Exploring textile-based electrode materials for electromyography smart garments[J]. Journal of Rehabilitation and Assistive Technologies Engineering, 2022, 9: 1-18. [46]G. Priniotakis. Electrochemical impedance spectroscopy as an objective method for characterization of textileelectrodes[J]. Transactions of the Institute of Measurement & Control, 2007, 29(3/4): 271-281. [47]De Luca C J, Gilmore L D, Kuznetsov M , et al. Filtering the surface EMG signal: Movement artifact and baseline noise contamination[J]. Journal of Biomechanics, 2010, 43(8): 1573-1579. [48]Liu Z, Liu X X. Progress on fabric electrodes used in biological signal acquisition[J]. Journal of Minerals and Materials Characterization and Engineering, 2015, 3(3): 204-214. [49]Ozturk O, Yapici M K. Surface electromyography with wearable graphene textiles[J]. IEEE Sensors Journal, 2021, 21(13): 14397-14406. [50]Clancy E A, Morin E L, Merletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12(1): 1-16. [51]Guo L, Sandsjö L, Ortiz-Catalan M, et al. Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording[J]. Textile Research Journal, 2020, 90(2): 227-244. [52]Kim S, Lee S, Jeong W. Emg measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization[J]. Polymers, 2020, 12(10): 2406. [53]庞莉娜, 王春红, 王慧泉, 等. 织物心电电极研究进展[J]. 产业用纺织品, 2021, 39(5):1-6. PANG Lina, WANG Chunhong, WANG Huiquan, et al. Research progress of fabric ECG electrodes[J]. Technical Textiles, 2021,39 (5) : 1-6. [54]Barrera C S, Piña-Martínez E, Roberts R, et al. Impact of size and shape for textile surface electromyography electrodes: A study of the biceps brachii muscle[J]. Textile Research Journal, 2022, 92(17/18): 3097-3110. |
[1] | 田源, 许巧丽, 薛惊理, 金光, 牟黄波, 杜赵群. 变关键参数下Miura-ori结构机织物的性能[J]. 现代纺织技术, 2025, 33(06): 36-41. |
[2] | 王也, 江华, 石璐璐, 解晓康, 路乐乐. 基于α-苯基重氮酯分散染料对氨纶的拼染工艺及性能[J]. 现代纺织技术, 2025, 33(05): 65-74. |
[3] | 李佳, 袁志磊, 石文慧, 徐平华. 织物拉伸形变视觉特征提取与表征方法[J]. 现代纺织技术, 2025, 33(05): 86-95. |
[4] | 吴紫娟, 夏风林, 吴光军, 赵克政. 变结构参数纬编间隔织物的设计及压缩性能[J]. 现代纺织技术, 2025, 33(05): 134-143. |
[5] | 杨瑞华, 华昱竹. 负泊松比结构纺织材料的研究进展[J]. 现代纺织技术, 2025, 33(04): 1-12. |
[6] | 缪永达, 金肖克, 田伟, 丁昊, 祝成炎. 激光雕刻对织物结构与透光性的影响[J]. 现代纺织技术, 2025, 33(04): 43-51. |
[7] | 郭金侠, 宋 益, 韦玉辉, 凌雪, 潘 伟. 洗涤条件对涂层整理智能织物性能的影响[J]. 现代纺织技术, 2025, 33(04): 68-74. |
[8] | 宋沛举, 唐俊松, 高国洪, 马明波, 周文龙. 气凝胶芳香微胶囊/PVA共混纤维的制备及缓释性能[J]. 现代纺织技术, 2025, 33(03): 1-7. |
[9] | 徐帅, 杨晓芳, 毛雷, 耿男男. 导电液体微量泄漏定位检测织物的制备及检测系统设计[J]. 现代纺织技术, 2025, 33(03): 110-119. |
[10] | 王阳, 胡凯宁, 张长欢. 含有镍钛合金丝的服用机织面料的形变性能[J]. 现代纺织技术, 2025, 33(03): 118-125. |
[11] | 丁传苗, 泮林丹, 陈浩, 王秉. 基于蛋白质组学的丝素蛋白微生物降解机理[J]. 现代纺织技术, 2025, 33(02): 42-48. |
[12] | 王汜辛, 闫永杰, 倪庆清. 碳纤维织物复合材料裂纹扩展特性的介观尺度有限元分析#br#[J]. 现代纺织技术, 2025, 33(02): 49-58. |
[13] | 赵亚楠, 葛甜甜, 张 妍, 朱 博, 张 宁, 潘如如. 基于泡沫整理技术的棉织物三防整理工艺与性能#br#[J]. 现代纺织技术, 2025, 33(02): 67-74. |
[14] | 何灏, 张迎亮, 刘宸君, 殷亚然, 陈康, 张先明. 尼龙6工业丝在不同负荷下的蠕变响应机制[J]. 现代纺织技术, 2025, 33(01): 1-9. |
[15] | 黄鑫鑫, 陈康, 殷亚然, 张先明. 不同预加张力热处理下尼龙66工业丝的结构性能演变[J]. 现代纺织技术, 2025, 33(01): 10-20. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 148
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||