Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (2): 99-105.DOI: 10.19398/j.att.202104032
• Materials Engineering • Previous Articles Next Articles
ZHOU Zihao, WU Lili, CHEN Ting()
Received:
2021-04-16
Online:
2022-03-10
Published:
2021-07-08
Contact:
CHEN Ting
通讯作者:
陈廷
作者简介:
周梓豪(1996-),男,江苏苏州人,硕士研究生,主要从事产业用纤维制品制备方面的研究。
基金资助:
CLC Number:
ZHOU Zihao, WU Lili, CHEN Ting. Simulation of gas flow field in reactor for preparation of carbon nanotube fibers by chemical vapor deposition[J]. Advanced Textile Technology, 2022, 30(2): 99-105.
周梓豪, 吴丽莉, 陈廷. 气相沉积法制备碳纳米管纤维反应器气体流场模拟[J]. 现代纺织技术, 2022, 30(2): 99-105.
性能 | 材料 | ||||
---|---|---|---|---|---|
氢气 | 甲烷 | 铜 | 石英 | 碳纳米管颗粒 | |
密度ρ/(kg·m-3) | 0.0819 | 0.6679 | 8978 | 2650 | 1700 |
比热容Cp/(J·kg-1·K-1) | 14283 | 2222 | 381 | 730 | 1220 |
导热系数K/(W·m-1·K-1) | 0.1672 | 0.0332 | 388 | 15 | 3000 |
动力黏度μ/(kg·m-1·s-1) | 8.411×10-6 | 1.087×10-5 | - | - | - |
Tab.1 Material property parameters
性能 | 材料 | ||||
---|---|---|---|---|---|
氢气 | 甲烷 | 铜 | 石英 | 碳纳米管颗粒 | |
密度ρ/(kg·m-3) | 0.0819 | 0.6679 | 8978 | 2650 | 1700 |
比热容Cp/(J·kg-1·K-1) | 14283 | 2222 | 381 | 730 | 1220 |
导热系数K/(W·m-1·K-1) | 0.1672 | 0.0332 | 388 | 15 | 3000 |
动力黏度μ/(kg·m-1·s-1) | 8.411×10-6 | 1.087×10-5 | - | - | - |
[1] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
DOI URL |
[2] | 何欣雨. 碳纳米管纤维制备方法及应用概述[J]. 中国纤检, 2020(8):120-124. |
HE Xinyu. Review of carbon nanotube fibers[J]. China Fiber Inspection, 2020(8):120-124. | |
[3] | 陆赞. 基于纤维的超级电容器电极材料的制备与性能研究[D]. 上海:东华大学, 2018. |
LU Zan. Research on Preparation and Properties of Fiber-based Electrodes for Supercapacitor[D]. Shanghai: Donghua University, 2018. | |
[4] |
BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339(6116):182-186.
DOI URL |
[5] |
YU C, GONG Y, CHEN R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J]. Small, 2018, 14(29):1801203.
DOI URL |
[6] |
ZHANG X, LI Q, TU Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3(2):244-248.
DOI URL |
[7] |
SHANG Y, WANG Y, LI S, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening[J]. Carbon, 2017, 119:47-55.
DOI URL |
[8] |
TRAN T Q, FAN Z, LIU P, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods[J]. Carbon, 2016, 99:407-415.
DOI URL |
[9] | 徐子超, 吴丽莉, 陈廷. 直接气相沉积法制备碳纳米管纤维的研究进展[J]. 纺织导报, 2019(6):67-71. |
XU Zichao, WU Lili, CHEN Ting. Research progress of direct-spinning based fabrication of carbon nanotube fibers[J]. China Textile Leader, 2019(6):67-71. | |
[10] |
SUN G, ZHOU J, YU F, et al. Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays[J]. Journal of Solid State Electrochemistry, 2012, 16(5):1775-1780.
DOI URL |
[11] | 殷腾, 蒋炳炎, 苏哲安, 等. 载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究[J]. 新型炭材料, 2018, 33(4):357-363. |
YIN Teng, JIANG Bingyan, SU Zhe'an, et al. Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon[J]. New Carbon Materials, 2018, 33(4):357-363. | |
[12] | 余风利. 碳纳米管化学气相沉积炉的优化设计与仿真[D]. 南昌:南昌大学, 2015. |
YU Fengli. The Optimization Design and Simulation of Carbon Nanotubes CVD Furnace[D]. Nanchang: Nanchang University, 2015. | |
[13] | 刘光启. 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2002. |
LIU Guangqi. Physical Property Data Manual of Organic Chemical Industry[M]. Beijing: Chemical Industry Press, 2002. | |
[14] | 韩帅帅. 连续碳纳米管纤维及其复合材料的制备与电化学性能研究[D]. 天津:天津大学, 2017. |
HAN Shuaishuai. Fabrication of Continuous Carbon Nanotube Fibers and Composites for Electrochemical Properties[D]. Tianjin: Tianjin University, 2017. | |
[15] |
CONROY D, MOISALA A, CAEDOSO S, et al. Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up[J]. Chemical Engineering Science, 2010, 65(10):2965-2977.
DOI URL |
[1] | QIAN Miao, YANG Zhenbin, SHI Huanqiang, XIANG Zhong, Zhang Jianxin. Influence of vortices within the rotor's condensation slot on yarn quality based on Ω vortex identification method [J]. Advanced Textile Technology, 2024, 32(7): 13-21. |
[2] | GONG Xinxia, YANG Ruihua. Motion simulation and morphological analysis of hooked fibers in a rotor spinner [J]. Advanced Textile Technology, 2024, 32(3): 21-28. |
[3] | SHEN Zekun, WANG Hui, YING Qifan. Effect of spinneret structure on flow characteristics of polymer melt in melt spinning extrusion process [J]. Advanced Textile Technology, 2023, 31(6): 80-91. |
[4] | WANG Yongfeng, JIANG Peiqing, ZHANG Bo, CAI Jundong, ZHANG Huapeng, . Numerical analysis of the effects of interface bonding properties of backplates on the ballistic performance of SiC/UHMWPE composite armor [J]. Advanced Textile Technology, 2023, 31(5): 1-11. |
[5] | CHEN Xiaohuia, ZHANG Guoqingb, YANG Ganga, YANG Liua, WANG Xueqina. The effect of phase change area distribution on temperature in phase change fabrics [J]. Advanced Textile Technology, 2023, 31(5): 174-180. |
[6] | JIANG Yingying, CHEN Ting. Numerical simulation of air flow field in the inner passage of melt blowing dual slot die [J]. Advanced Textile Technology, 2023, 31(2): 72-79. |
[7] | ZHU Wenni, LIU Qianqian, JAMSHAID Hafsa, LI Li, ZHU Guocheng. Numerical simulation of deposition characteristics of viscous particles on the surface of polyvinylidene fluoride membrane [J]. Advanced Textile Technology, 2022, 30(5): 42-51. |
[8] | ZHANG Wei, CHENG Wenkai, ZHANG Xianming. Numerical simulation of melt spinning process of polyester industrial yarn [J]. Advanced Textile Technology, 2022, 30(5): 52-59. |
[9] | QIU Haifei. Numerical simulation of airflow field in spinning channel on automatic air-exhauster rotor [J]. Advanced Textile Technology, 2022, 30(3): 108-116. |
[10] | LIU Hongxia, XU Jiawen, CHEN Ting. Motion simulation of carbon nanotube fibers in a vapor deposition reactor [J]. Advanced Textile Technology, 2022, 30(2): 106-112. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||