[1] 刘伟庆,方海,方园.纤维增强复合材料及其结构研究进展[J].建筑结构学报,2019,40(4):1-16. LIU Weiqing, FANG Hai, FANG Yuan. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures, 2019, 40(4): 1-16. [2] 马晓坤,王瑞,侯建峰,等.基于汽车轻量化的碳纤维复合材料应用分析[J].化工新型材料,2020,48(11):223-226. MA Xiaokun, WANG Rui, HOU Jianfeng, et al. Application analysis of CFRP based on automobile lightweight[J]. New chemical materials, 2020, 48(11): 223-226. [3] 薛忠民,王占东,尹证.中国工业复合材料发展回顾与展望[J].复合材料科学与工程,2021(6):119-128. XUE Zhongmin, WANG Zhandong, YIN Zheng. Develop-ment review and prospect of industrial composites in china[J]. Composites science and engineering, 2021(6): 119-128. [4] CORDIN M, BECHTOLD T, PHAM T. Effect of fibre orientation on the mechanical properties of polypropylene-lyocell composites[J]. Cellulose, 2018, 25(12): 7197-7210. [5] HIDALGO-SALAZAR M A, SALINAS E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk colombian biocomposites[J]. Composites, 2019, 176(1): 1-11. [6] HAO X, ZHOU H, MU B, et al. Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites[J]. Composites Part B Engineering, 2020, 185(7): 107778. [7] FAN D, ZHANG R, WANG X, et al. Influence of silver dopant on the morphology and ultraviolet emission in aligned ZnO nanostructures[J]. Physica Status Solidi (A) Applications and Materials, 2012, 209(2): 335-339. [8] NAIN R, YADAV K, JASSAL M, et al. Aligned ZnO nanorods as effective reinforcing material for obtaining high performance polyamide fibers[J]. Composites Science and Technology, 2015, 120: 58-65. [9] QIAN H, KALINKA G, CHAN K, et al. Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: Methodologies for hierarchical composites[J]. Nanoscale, 2011, 3(11): 4 759-4767. [10] GOH P S, ISMAIL A F, NG B C. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56(1): 103-126. [11] LADANI R B, WU S, KINLOCH A J, et al. Improving the toughness and electrical conductivity of epoxy nanocom-posites by using aligned carbon nanofibres[J]. Composites Science and Technology, 2015, 117: 146-158. [12] ASHORI A, NOURBAKHSH A. Reinforced polypropylene composites: Effects of chemical compositions and particle size[J]. Bioresource Technology, 2010, 101(7): 2515-2519. [13] WANG H W, ZHOU H W, PENG R D, et al. Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept[J]. Composites Science and Technology, 2011, 71(7): 980-988. [14] WAN J, LIU X J, LI T Q, et al. Study on the orientation of unidirectional C/C composites[J]. Advanced Materials Research, 2010, 129: 824-827. [15] VALLES C, PAPAGEORGIOU D G, LIN F, et al. PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites[J]. Carbon, 2020, 157: 750-760. [16] DONG Y, MARSHALL J, HAROOSH H J, et al. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification[J]. Composites Part A: Applied Science and Manufac-turing, 2015, 76: 28-36. [17] WU S, LADANI R B, ZHANG J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94: 607-618. [18] HUANG J, RODRIGUE D. The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites[J]. Materials and Design, 2014, 55: 653-663. [19] KHAN S U, POTHNIS J R, KIM J K. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing. 2013, 49: 26-34. [20] 吴美升,盖国胜,黄佳木,等.无机非金属矿物填料的研究进展[J].化工矿物与加工,2003,32(4):1-5. WU Meisheng, GAI Guosheng, HUANG Jiamu, et al. Research and advance of inorganic nonmetal mineral fillers[J]. Industrial Minerals & Processing, 2003,32(4):1-5. [21] WU S, LADAIN R B, ZHANG J, et al. Epoxy nanocom-posites containing magnetite-carbon nanofibers aligned using a weak magnetic field[J]. Polymer, 2015,68:25-34. [22] MIRJALILI V, HUBERT P. Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification[J]. Composites Science and Technology, 2010, 70(10): 1537-1543. [23] HOSTENSON E T, CHOU T W. Nanotube buckling in aligned multi-wall carbon nanotube composites[J]. Carbon, 2004, 42(14): 3015-3018. [24] RICHARD L M, PELLERN C. Orientation and partial disentanglement in individual electrospun fibers: Diameter dependence and correlation with mechanical properties[J]. Macromolecules, 2015, 48(13): 4511-4519. [25] MCFARLAND F M, LIU X, ZHANG S, et al. Electric field induced assembly of macroscopic fibers of poly (3-hexylthiophene) [J]. Polymer, 2018, 151: 56-64. [26] BHASIN M, WU S, LADANI R B, et al. Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets[J]. International Journal of Fatigue. 2018, 113: 88-97. [27] LADANI R B, WU S, KINLOCH A J, et al. Multifunc-tional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon[J]. Materials and Design. 2016, 94: 554-564. [28] MONTI M, NATALI M, TORRE L, et al. The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field[J]. Carbon, 2012, 50(7): 2453-2464. [29] ZHU Y F, MA C, WEI Z, et al. Alignment of multi-walled carbon nanotubes in bulk epoxy composites via electric field[J]. Journal of Applied Physics, 2009, 105(5): 054319. [30] PU X, ZHA J W, ZHAO C L, et al. Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators[J]. Chemical Engineering Journal, 2020, 398: 125526. [31] PARK C, WILKINSON J, BANDA S, et al. Aligned single-wall carbon nanotube polymer composites using an electric field[J]. Journal of Polymer Science, Part B: Polymer Physics. 2006, 44(12): 1751-1762. [32] OLIVA-AVILES A I, AVILES F, SOSA V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J]. Carbon, 2011, 49(9): 2989-2997. [33] MA C, ZHU Y F, YANG X Z, et al. Macroscopic networks of carbon nanotubes in PMMA matrix induced by AC electric field[J]. Journal of Dispersion Science and Technology, 2008, 29(4): 502-507. [34] YANG X, ZHU Y, JI L, et al. Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene[J]. Journal of Dispersion Science and Technology. 2007, 28(8): 1164-1168. [35] SAFAEE S, SCHOCK M, JOYEE E B, et al. Field-assisted additive manufacturing of polymeric composites[J]. Additive Manufacturing, 2022: 102642. [36] ZHANG K, ZHAO W, LIU Q, et al. A new magnetic melt spinning device for patterned nanofiber[J]. Scientific Reports, 2021, 11(1): 1-11. [37] LU J P. Novel magnetic properties of carbon nanotubes[J]. Physical Review Letters, 1995, 74(7):1123-1126. [38] 黄东辉,曾少华.磁致取向碳纳米管增强玻璃纤维/环氧复合材料的层间性能研究[J].复合材料科学与工程,2021(12): 53-59. HUANG Donghui, ZENG Shaohua. Interlaminar properties of magnetically oriented carbon nanotubes-reinforced glass fiber /epoxy composites[J]. Composites Science and Engineering, 2021(12): 53-59. [39] KIM H C, KIM J W, ZHAI L, et al. Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields[J]. Cellulose, 2019, 26(10): 5821-5829. [40] YANG Y, SONG X, LI X, et al. Recent progress in biomimetic additive manufacturing technology: From materials to functional structures[J]. Advanced Materials, 2018, 30(36): 1706539. [41] WU S, ZHANG J, LADANI R B, et al. A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocomposites[J]. Polymer, 2016, 97: 273-284. [42] CAMPONESCHI E, VANCE R, AL-HAIK M, et al. Properties of carbon nanotube-polymer composites aligned in a magnetic field[J]. Carbon, 2007, 45(10): 2037-2046. [43] CHEN D, LIU T, ZHOU X, et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes[J]. Journal of Physical Chemistry B, 2009, 113(29): 9741-9748. [44] CHOI E S, BROOKS J S, EATON D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing[J]. Journal of Applied Physics, 2003, 94(9): 6034-6039. [45] PROLONGO S G, MELITON B G, ROSARIO G D, et al. New alignment procedure of magnetite-CNT hybrid nano-fillers on epoxy bulk resin with permanent magnets[J]. Composites Part B: Engineering, 2013, 46: 166-172. [46] HAMASAKI A, FUJIO K, MORI T, et al. Optical and electrical characteristics of carbonized film prepared from coal tar pitch under a high magnetic field of 10 T[J]. Journal of Applied Physics, 2019, 125(23): 234904. [47] CHEN P, LIN Y, ZHAO J, et al. Strain-induced crystal growth and molecular orientation of poly (isobutylene-isoprene) rubber at low temperatures[J]. Soft Matter, 2019, 15(21): 4363-4370. [48] MICHAELI M, MENGESs G, Prediction of product properties in extrusion and injection molding[J]. Polymers for Advanced Technologies, 1989, 9(1): 69-85. [49] LI W, WANG Q, DAI J. Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocom-posites[J]. Bulletin of Materials Science, 2006, 29(3): 313-316. [50] JI J, SUI G, YU Y, et al. Significant improvement of mechanical properties observed in highly aligned carbon-nanotube-reinforced nanofibers[J]. Journal of Physical Chemistry C, 2009, 113(12): 4779-4785. [51] ZHANG Q, LAN L, ZHENG Z, et al. Constructing highly oriented and condensed shish-kebab crystalline structure of HDPE/UHMWPE blends via intense stretching process: Achieving high mechanical properties and in-plane thermal conductivity[J]. Polymer, 2022: 124532. [52] ZAMORA-LEDEZMA C, BLANC C, ANGLARET E. Controlled alignment of individual single-wall carbon nanotubes at high concentrations in polymer matrices[J]. Journal of Physical Chemistry C, 2012, 116(25): 13760-13766. [53] DYKES L, TORKELSON J M, BURGHARDT W R, et al. Shear-induced orientation in polymer/clay dispersions via in situ X-ray scattering[J]. Polymer, 2010, 51(21): 4916-4927. [54] GAN L, QIU F, HAO Y B, et al. Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene[J]. Journal of Materials Science, 2016, 51(11): 5185-5195. [55] SULONG A B, PARK J. Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: Mechanical properties enhancement[J]. Journal of Composite Materials, 2010, 45(8): 931-941. [56] FAN Z, ADVANI S G. Characterization of orientation state of carbon nanotubes in shear flow[J]. Polymer, 2005, 46(14): 5232-5240. [57] ZHONG W, LI F, ZHANG Z, et al. Short fiber reinforced composites for fused deposition modeling[J]. Materials Science and Engineering: A, 2001, 301(2): 125-130. [58] LIANG Z, PEI Y, CHEN C, et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment[J]. ACS Nano, 2019, 13(11): 12653-12661. [59] CHEON S, KANG H, KIM H, et al. High-Performance triboelectric nanogenerators based on electrospun polyviny-lidene fluoride-Silver nanowire composite nanofibers[J]. Advanced Functional Materials, 2018, 28(2):1703778. [60] SALALHA W, DROR Y, KHALFIN R L, et al. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2004, 20(22): 9852-9855. [61] MORADKHANNEIHAD L, ABDOUSS M, NIKFA-RIAM N, et al. Electrospinning of zein/propolis nanofibers; antimicrobial properties and morphology investigation[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(11): 1-10. [62] RAHMATI M, MILLS D K, URBANSKA A M, et al. Electrospinning for tissue engineering applications[J]. Progress in Materials Science, 2021, 117: 100721. [63] SHEPA I, MUDRA E, DUSZA J. Electrospinning through the prism of time[J]. Materials Today Chemistry, 2021, 21: 100543. [64] CHRONAKIS I S. Novel nanocomposites and nanoce-ramics based on polymer nanofibers using electrospinning process: A review[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 283-293. [65] DEVAUX E, KONCAR V, KIM B, et al. Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications[J]. Transactions of the Institute of Measurement and Control, 2007, 29(3/4): 355-376. [66] CHENG Q, WANG J, JIANG K, et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites[J]. Journal of Materials Research, 2008, 23(11): 2975-2983. [67] BRADFORD P D, XIN W, ZHAO H, et al. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(13): 1980-1985. [68] XIE R, WANG J, YANG Y, et al. Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation[J]. Composites Science and Technology. 2011, 72(1): 85-90. |