[1] 屈孟男,侯琳刚,何金梅,等.功能化超疏水材料的研究与发展[J].化学进展,2016,28(12):1774-1787. QU Mengnan, HOU Lingang, HE Jinmei, et al. Research and development of functional superhydrophobic materials[J]. Progress in Chemistry, 2016, 28(12): 1774-1787. [2] 佟威,熊党生.仿生超疏水表面的发展及其应用研究进展[J].无机材料学报,2019,34(11):1133-1144. TONG Wei, XIONG Dangsheng. Bioinspired superhy-drophobic materials: Progress and functional application[J]. Journal of Inorganic Materials, 2019, 34(11): 1133-1144. [3] BAI Y X, ZHANG H P, SHAO Y Y, et al. Recent progresses of superhydrophobic coatings in different application fields: An overview[J]. Coatings, 2021, 11(2): 116. [4] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. [5] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. [6] FENG L, LI S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. [7] GAO X F, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004, 432: 36. [8] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. [9] 徐兰芳,王锋,于英豪,等.超亲水/水下超疏油膜功能材料及其研究进展[J].材料导报,2020,34(17):17105-17114. XU Lanfang, WANG Feng, YU Yinghao, et al. Research progress on superhydrophilic/underwater superoleophobic functional membrane materials[J]. Materials Reports, 2020, 34(17): 17105-17114. [10] WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. [11] SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of American Chemical Society, 2016, 138(6): 1727-1748. [12] SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and super-hydrophilic materials[J]. ACS Central Science, 2018, 4(9): 1102-1112. [13] SHANMUGAVELAYUTHAM G, ANUPRIYANKA T, BHAGYASHREE P, et al. Plasma surface modification of cotton fabric by using low pressure plasma[J]. IEEE Transactions on Plasma Science, 2021, 49(2): 497-501. [14] ZHONG L Q, GONG X. Phase separation-induced superhydrophobic polylactic acid films[J]. Soft Matter, 2019, 15(6): 9500-9506. [15] ZHU Y, HE Y, ZHANG J F, et al. Preparation of large-scale, durable, superhydrophobic PTFE films using rough glass templates[J]. Surface and Interface Analysis, 2017, 49(13): 1422-1430. [16] LONG M Y, PENG S, DENG W S, et al. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane[J]. Journal of Colloid and Interface Science, 2017, 508: 18-27. [17] GUO J C, WANG C D, YU H B, et al. Preparation of a wear-resistant, superhydrophobic SiO2/silicone-modified polyurethane composite coating through a two-step spraying method[J]. Progress in Organic Coatings, 2020, 146: 105710. [18] RAMAN A, JAYAN J S, DEERAJ B D S, et al. Electrospun nanofibers as effective superhydrophobic surfaces: A brief review[J]. Surfaces and Interfaces, 2021, 24: 101140. [19] KIM Y, LEE W, AGN Y. Metal ion-assisted fabrication of hierarchically structured superhydrophobic surfaces on Mg plates[J]. 2018, Bulletin of the Korean Chemical Society, 2018, 39(6): 837-839. [20] KE C, ZHANG C H, WU X G, et al. Highly transparent and robust superhydrophobic coatings fabricated via a facile sol-gel process[J]. Thin Solid Films, 2021, 723: 138583. [21] WAN H R, HE T T, JU X Z, et al. Rapid fabrication of superhydrophobic surface on magnesium alloy with excellent corrosion-resistant and self-cleaning properties[J]. Bulletin of the Chemical Society of Japan, 2021, 94(3): 961-965. [22] MA N, CHENG D, ZHANG J Q, et al. A simple, inexpensive and environmental-friendly electrochemical etching method to fabricate superhydrophobic GH4169 surfaces[J]. Surface & Coatings Technology, 2020, 399: 126180. [23] LIAO K J, ZHU J Y. A facile and cost-effective method to prepare a robust superhydrophobic RTV silicone coating[J]. Coatings, 2021, 11(3): 312. [24] CELIK N, TORUN I, RUZI M, et al. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures[J]. Chemical Engineering Journal, 2020, 396: 125230. [25] ZHANG N, QI F F, TIAN S H, et al. Bottom-up and up-down strategy to obtain the highly porous polystyrene foam for oily water remediation[J]. Separation and Purification Technology, 2021, 262: 118233. [26] KIM D C, HA Y G. Cross-linked organic-inorganic hybrid composite films for one-step fabrication of robust superhydrophobic surfaces[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2): 1028-1032. [27] ZHANG F, SHI Z W, CHEN L S, et al. Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition[J]. Surface & Coatings Technology, 2017, 315: 385-390. [28] ATTAR M, KHAJAVIAN E, HOSSEINPOUR S, et al. Fabrication of micro-nano-roughened surface with superhy-drophobic character on an aluminium alloy surface by a facile chemical etching process[J]. Bulletin of Materials Science, 2019, 43(1): 31. [29] 薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水TiO2/PDMS涂层的制备及性能[J].中国表面工程,2021,34(4):53-59. XUE Xinyu, YIN Zhengsheng, JIANG Yongfeng, et al. Preparation and properties of TiO2/PDMS anticor-rosion superhydrophobic coating on carbon steel[J]. China Surface Engineering, 2021, 34(4): 53-59. [30] FENG C C, ZHANG Z Y, LI J, et al. A bioinspired, highly transparent surface with dry-style antifogging, antifrosting, antifouling, and moisture self-cleaning properties[J]. Macromolecular Rapid Communications, 2019, 40(6): 1800708. [31] 赵一鉴,燕则翔,苏建民,等.仿生防冰表面研究进展[J].表面技术,2021,50(10):29-39. ZHAO Yijian, YAN Zexiang, SU Jianmin, et al. Research progress of biomimetic anti-icing Surface[J]. Surface Technology, 2021, 50(10): 29-39. [32] 张春来,王潇,吴银涛,等.超疏水表面水下减阻技术研究进展[J].功能材料与器件学报,2021,27(5):445-455. ZHANG Chunlai, WANG Xiao, WU Yintao, et al. Research onunderwater drag reduction technology of super-hydrophobic surfaces[J]. Journal of Functional Materials and Devices, 2021, 27(5): 445-455. [33] LI Z, MILIONIS A, ZHENG Y, et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion[J]. Nature Communications, 2019, 10: 5562. [34] ZHAO C M, CHEN L, YU C M, et al. Fabrication of hydrophobic NiFe2O4@poly(DVB-LMA) sponge via a Pickering emulsion template method for oil/water separation[J]. Soft Matter, 2021, 17(8): 2327-2339. [35] QING Y Q, LONG C, AN K, et al. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances[J]. Journal of Colloid and Interface Science, 2019, 548: 224-232. [36] 贺雅卿.湿巾发展概况和个人护理用湿巾新趋势[J].造纸信息,2020(5):47-51. HE Yaqing. Overview and new trends of wet wipes[J]. China Paper Newsletters, 2020(5): 47-51. [37] LIU K S, DU J X, WU J T, et al. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials[J]. Nanoscale, 2012, 4(3): 768-772. [38] ZHOU Y Y, MA Y B, SUN Y Y, et al. Facile preparation of robust superhydrophobic cotton fabric for ultrafast removal of oil from contaminated waters[J]. Environmental Science and Pollution Research, 2020, 27(17): 21202-21212. [39] CHEN P C, XU Z K. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation[J]. Scientific Reports, 2013, 3: 2776. [40] ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. [41] CHAKRABARTY B, GHOSHAL A K, PURKAIT M K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane[J]. Journal of Membrance Science, 2008, 325(1) 427-437. [42] TAI M H, GAO P, TAN B Y L, et al. Highly efficient and flexible electrospun carbon-silica nanofibrous membrane for ultrafast gravity-driven oil-water separation[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9393-9401. [43] SHI H, HE Y, PAN Y, et al. A modified musselinspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrance Science, 2016, 506: 60-70. [44] CHEN Y E,WANG N, GUO F Y, et al. A Co3O4 nano-needle mesh for highly efficient, high-flux emulsion separation[J]. Journal of Materials Chemistry A, 2016, 4(31): 12014-12019. [45] WANG J T, WANG H F. Separation and purification technology easily enlarged and coating-free underwater superoleophobic fabric for oil/water and emulsion separation via a facile NaClO2 treatment[J]. Separation and Purification Technology, 2018, 195: 358-366. [46] CUI J Y, ZHOU Z P, XIE A T, et al. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation[J]. Separation and Purification Technology, 2019, 209: 434-442. [47] DU L, QUAN X, FAN X F, et al. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 210: 891-899. [48] SHAHABADI S M S, BRANT J A. Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water[J]. Separation and Purification Technology, 2018, 210: 587-599. [49] BAI X G, SHEN Y Q, TIAN H F, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation[J]. Separation and Purification Technology, 2019, 210: 402-408. [50] LI X P, CAO M, SHAN H T, et al. Facile and scalable fabrication of superhydrophobic and superole-ophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation[J]. Chemical Engineering Journal, 2018, 358: 1011-1113. |