Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (3): 39-46.DOI: 10.19398/j.att.202201026
• ComprehensiveReview • Previous Articles Next Articles
LI Huihui, WANG Qun, Jia Weike, WANG Jiping
Received:
2022-01-14
Revised:
2022-03-09
Online:
2022-05-10
Published:
2022-05-26
李慧慧, 王群, 贾伟科, 王际平
作者简介:
李慧慧(1994-),女,河南周口人,硕士研究生,主要从事多功能纺织品方面的研究。
基金资助:
CLC Number:
LI Huihui, WANG Qun, Jia Weike, WANG Jiping. Recent advances in the fabrication and application of multi-functional super-hydrophobic textiles[J]. Advanced Textile Technology, 2022, 30(3): 39-46.
李慧慧, 王群, 贾伟科, 王际平. 多功能超疏水纺织品的制备及应用研究进展[J]. 现代纺织技术, 2022, 30(3): 39-46.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202201026
[1] AUTUMN K, LIANG Y A, HSIEH S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(6787): 681-685. [2] 张红阳,任煜,徐林,等.仿生超疏水织物的研究进展[J].纺织导报,2017(9):55-59. ZHANG Hongyang, REN Yu, XU Lin, et al.Research progress of bionic superhydrophobic textiles[J]. China Textile Leader, 2017(9): 55-59. [3] WANG J, CHEN H, SUI T, et al. Investigation on hydrophobicity of lotus leaf: Experiment and theory[J]. Plant Science, 2009, 176(5): 687-695. [4] ROACH P, SHIRTCLIFFE N J, NEWTON M I. Progess in superhydrophobic surface development[J]. Soft Matter, 2008, 4(2): 224-240. [5] 杨靖.常压等离子体射流制备超疏水棉织物及其油水分离应用研究[D].青岛:青岛大学,2019. YANG Jing. Superhydrophobic Cotton Fabrics through Atmospheric Plasma Treatment for Applications in Oil-water Separation[D]. Qingdao: Qingdao University, 2019. [6] WANG H, YAO Q, WANG C, et al. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood[J]. Scientific Reports, 2016, 6(1): 1-10. [7] XUE C H, DU M M, GUO X J, et al. Fabrication of superhydrophobic photothermal conversion fabric via layer-by-layer assembly of carbon nanotubes[J]. Cellulose, 2021, 28(8): 5107-5121. [8] 杨可成.基于CuS/SiO2气凝胶复合材料制备超双疏纺织品[D].上海:上海工程技术大学,2020. YANG Kecheng. Preparation of Superamphiphobic Textiles Based on CuS/SiO2Aerogel Composites[D]. Shanghai: Shanghai University of Engineering Science, 2020. [9] LI S H, HUANG J Y, GE M Z, et al. Controlled grafting superhydrophobic cellulose surface with environmentally-friendly short fluoroalkyl chains by ATRP[J]. Materials & Design, 2015, 85: 815-822. [10] SUN X, BAI L, LI J, et al. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments[J]. Carbon, 2021, 182: 11-22. [11] BAE G Y, MIN B G, JEONG Y G, et al. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent[J]. Journal of Colloid and Interface Science, 2009, 337(1): 170-175. [12] DONG X, GU Z, HANG C, et al. Study on the salt-free low-alkaline reactive cotton dyeing in high concentration of ethanol in volume[J]. Journal of Cleaner Production, 2019, 226: 316-323. [13] LU X, LI Z, LIU Y, et al. Titanium dioxide coated carbon foam as microreactor for improved sunlight driven treatment of cotton dyeing wastewater[J]. Journal of Cleaner Production, 2020, 246: 118949. [14] 陈淑嫔,李红强,赖学军,等.超疏水阻燃织物的研究进展[J].涂料工业,2020,50(12):83-88. CHEN Shupin, LI Hongqiang, LAI Xuejun, et al. Research progress of superhydrophobic and flame-retardant fabrics[J]. Paint & Coatings Industry, 2020, 50(12): 83-88. [15] 陈春晖,许多,李治江,等.疏水亲油复合棉织物的制备及其性能[J].现代纺织技术,2021:1-9.DOI:10.19398/j.att.202107001. CHEN Chunhui, XU Duo, LI Zhijiang, et al. Preparation and properties of hydrophobic-oleophylic composite cotton[J]. Advanced Textile Technology, 2021: 1-9.DOI:10.19398/j.att.202107001. [16] 石敏,王騊,王晟.快速油-水分离用PVDF/PDMS超疏水膜的一步法制备及性能[J].现代纺织技术,2021:1-7.DOI:10.193981/j.att.202106068. SHI Min, WANG Tao, WANG Sheng, Properties and preparation of PVDF/PDMS superhydrophobic membrane for rapid oil-water separation by one-step method[J]. Advanced Textile Technology, 2021:1-7.DOI:10.193981/j.att.202106068. [17] LI D, GOU X, WU D, et al. A robust and stretchable superhydrophobic PDMS/PVDF@ KNFs membrane for oil/water separation and flame retardancy[J]. Nanoscale, 2018, 10(14): 6695-6703. [18] ZHANG W, LIU N, ZHANG Q, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability[J]. Angewandte Chemie International Edition, 2018, 57(20): 5740-5745. [19] WANG P, ZHANG D, LU Z, et al. Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1120-1127. [20] HUANG J Y, LI S H, GE M Z, et al. Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2825-2832. [21] 赵一鉴,燕则翔,苏建民,等.仿生防冰表面研究进展[J].表面技术,2021,50(10):29-39. ZHAO Yijian, YAN Zexiang, SU Jianmin, et al. Research progress of biomimetic anti-icing surface[J]. Surface Technology, 2021, 50(10): 29-39. [22] LI X, WANG G, MOITA A S, et al. Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis[J]. Applied Surface Science, 2020, 505: 144386. [23] GAO S, HUANG J, LI S, et al. Facile construction of robust fluorine-free superhydrophobic TiO2@ fabrics with excellent anti-fouling, water-oil separation and UV-protective properties[J]. Materials & Design, 2017, 128: 1-8. [24] 张春来,王潇,吴银涛,等.超疏水表面水下减阻技术研究进展[J].功能材料与器件学报,2021,27(5):445-455. ZHANG Chunlai, WANG Xiao, WU Yintao, et al. Research on underwater drag reduction technology of super-hydrophobic surfaces[J]. Journal of Functional Materials and Devices, 2021, 27(5): 445-455. [25] 曹颐戬,王聪,王丽琴.仿生超疏水材料及其在文物保护中的应用综述[J].材料导报,2020,34(3):184-190. CAO Yijian, WANG Cong, WANG Liqin. A review of bioinspired superhydrophobic materials and their applications in heritage conservation[J]. Materials Reports, 2020, 34(3): 184-190. [26] 王立新,张琳琳,张硕研,等.猪笼草叶笼滑移区各向异性超疏水润湿特性表征与机理分析[J].中国农业大学学报,2020,25(8):35-42. WANG Lixin, ZHANG Linbin, ZHANG Shuoyan, et al. Anisotropic superhydrophobic wettability measurement and mechanism analysis of slippery zone in nepenthes pitchers[J]. Journal of China Agricultural University, 2020, 25(8): 35-42. [27] SINGH A K, SINGH J K. Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorine-free chemical modification for dual-functional water purification[J]. New Journal of Chemistry, 2017, 41(11): 4618-4628. [28] REN G, SONG Y, LI X, et al. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property[J]. Journal of Colloid and Interface Science, 2018, 522: 57-62. [29] LI S, HUANG J, Ge M, et al. Robust flower-like TiO2@ cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation[J]. Advanced Materials Interfaces, 2015, 2(14): 1500220. [30] XUE C H, GUO X J, Zhang M M, et al. Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiol-ene click chemistry[J]. Journal of Materials Chemistry A, 2015, 3(43): 21797-21804. [31] WANG Y, PENG S, SHI X, et al. A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics[J]. Applied Surface Science, 2020, 505: 144621. [32] HE T, LIU X, WANG Y, et al. Fabrication of durable hierarchical superhydrophobic fabrics with Sichuan pepper-like structures via graft precipitation polymerization[J]. Applied Surface Science, 2020, 529: 147017. [33] BAI W, LIN H, ChEN K, et al. Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil-water separation[J]. Separation and Purification Technology, 2020, 253: 117545. [34] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403. [35] ZHAO X, LI Y, LI B, et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes[J]. Journal of colloid and interface science, 2019, 542: 8-14. [36] KAMEGAWA T, SHIMIZU Y, YAMASHITA H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene[J]. Advanced Materials, 2012, 24(27): 3697-3700. [37] PAKDEL E, WANG J, KASHI S, et al. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments[J]. Advances in Colloid and Interface Science, 2020, 277: 102116. [38] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157. [39] SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. [40] ZHU H, GUO Z, LIU W. Adhesion behaviors on superhydrophobic surfaces[J]. Chemical Communications, 2014, 50(30): 3900-3913. [41] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. [42] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. [43] 熊迷迷.超疏水/抗紫外功能性织物整理剂的制备与应用研究[D].广州:华南理工大学,2019. XIONG Mimi. Preparation and Application of Superhydrophobic and UV-resistant Cotton Fabric Finishing Agent [D]. Guangzhou: South China University of Technology, 2019. [44] LIU C, SUN J, LI J, et al. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces[J]. Scientific Reports, 2017, 7(1): 1-8. [45] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. [46] WANG S, JIANG L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21):3423-3424. [47] ZAHID M, MAZZON G, ATHANASSIOU A, et al. Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art[J]. Advances in Colloid and Interface Science, 2019, 270: 216-250. [48] 刘亚东.纳米CuS/RGO复合材料的制备及其在超疏水多功能纺织品的应用[D].上海:上海工程技术大学,2019. LIU Yadong. Preparation of Nano-CuS/RGO Composites and Its Application in Superhydrophobic Multifunctional Textiles[D]. Shanghai: Shanghai University of Engineering Science, 2019. [49] JIANG C, LIU W, YANG M, et al. Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry[J]. Applied Surface Science, 2019, 463: 34-44. [50] GUO F, WEN Q, PENG Y, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874. [51] 李维斌,张程,刘军.超疏水棉织物制备及其在油水过滤分离中应用[J].纺织学报,2021,42(8):109-114. LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114. [52] REN J, TAO F, LIU L, et al. A novel TiO2@ stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers, 2020, 232: 115807. [53] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. [54] LIU L, HUANG Z, PAN Y, et al. Finishing of cotton fabrics by multi-layered coatings to improve their flame retardancy and water repellency[J]. Cellulose, 2018, 25(8): 4791-4803. [55] 徐林,任煜,张红阳,等.涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J].纺织学报,2019,40(12):86-92. XU Lin, REN Yu, ZHANG Hongyang, et al. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface[J]. Journal of Textile Research, 2019, 40(12): 86-92. [56] WANG P, LI Z, XIE Q, et al. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength[J]. Journal of Bionic Engineering, 2021, 18(1): 55-64. [57] ZHOU H, WANG H, NIU H, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. [58] GE M, CAO C, LIANG F, et al. A "PDMS-in-water" emulsion enables mechanochemically robust superhy-drophobic surfaces with self-healing nature[J]. Nanoscale Horizons, 2020, 5(1): 65-73. |
[1] | WEI Qicheng, WANG Jieqiong, LIN Wanli, TIAN Wei, LI Ya. Preparation of multi-scale PAN/ZnO hydrophilic fibers and their infiltration mechanism [J]. Advanced Textile Technology, 2024, 32(8): 46-55. |
[2] | SHAO Mingjun, JIAN Yulan, SAN Fuhua, CHAI Xijuan, XIE Linkun. Preparation of durable superamphiphobic coatings on cotton fabric surfaces and their properties [J]. Advanced Textile Technology, 2024, 32(2): 112-120. |
[3] | ZHAO Qi, FANG Zheng . Construction of efficient cleaning properties of microfiber synthetic leather surfaces based on micro-nano structures and photocatalysis [J]. Advanced Textile Technology, 2023, 31(6): 36-42. |
[4] | ZHANG Rui, ZHENG Yingyinga, DONG Zhengmeia, ZHANG Ting, SHEN Liming, WANG Jian, ZOU Zhuanyong. Application and research progress of bionic design in smart textiles [J]. Advanced Textile Technology, 2023, 31(6): 226-240. |
[5] | CHEN Fan, JIN Wanhui, WANG Tao. Preparation of a unidirectional water transport Janus composite cotton fabric and its cooling performance [J]. Advanced Textile Technology, 2023, 31(5): 190-197. |
[6] | QIU Xinni, GUO Yunqi, ZHANG Nantao, WANG Xin, SHI Jiawei, OU Jiayu, LI Yong, YU Chuanming. Fabrication of superhydrophobic cosmetic cotton pads by vapour phase deposition method and its oil-water separation [J]. Advanced Textile Technology, 2022, 30(6): 157-165. |
[7] | TAN Wei, MA Mingbo, ZHOU Wenlong. Preparation of self-cleaning multifunctional cotton fabrics based on nano-Cs0.33WO3 and its properties [J]. Advanced Textile Technology, 2022, 30(5): 213-221. |
[8] | ZHUGE Yina, LIU Fujuan. Review of antimicrobial materials with bionic micro-nano structure [J]. Advanced Textile Technology, 2022, 30(5): 222-234. |
[9] | SHI Min, WANG Tao, WANG Sheng. Properties and preparation of PVDF/PDMS superhydrophobic membrane for rapid oil-water separation by one-step method [J]. Advanced Textile Technology, 2022, 30(4): 108-114. |
[10] | WANG Rongchen, ZHANG Yifeng, DUAN Shuxia, SHI Peilong, JIA Jianghuan, ZHANG Heng. Research progress on forming methods and application of liquid asymmetric transmission nonwoven material [J]. Advanced Textile Technology, 2022, 30(3): 13-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||