[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [2] 晏琳.坯布表面缺陷的检测与分类算法研究[D].西安:西安工程大学,2019. YAN Lin. Research on Fabric Surface Defect Detection and Classification[D]. Xi'an: Xi'an Polytechnic University, 2019. [3] 李敏,杨珊,何儒汉,等.结合视觉显著性和卷积神经网络的提花织物疵点检测技术[J].现代纺织技术,2021,29(6):62-66. LI Min, YANG Shan, HE Ruhan, et al. Jacquard fabric defect detection combining visual saliency and convolutional neural network[J]. Advanced Textile Technology, 2021,29(6):62-66. [4] 江伴,谢晓峰,董燕.基于浅层卷积特征和双低秩表示的织物疵点检测算法研究[J].中原工学院学报,2020,31(5):21-26. JIANG Ban, XIE Xiaofeng, DONG Yan. Fabric defect detection algorithm based on shallow CNN feature and double low-rank representation[J]. Journal of Zhongyuan University of Technology, 2020, 31(5): 21-26. [5] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017: 1251-1258. [6] 史甜甜.基于Fisher准则的深层卷积神经网络织物疵点检测[J].计算机系统应用,2019,28(3):140-145. SHI Tiantian. Deep convolutional neural network fabric defect detection based on fisher criterion[J]. Computer Systems and Applications, 2019, 28(3): 140-145. [7] LIU Z, ZHANG C, LI C, et al. Fabric defect recognition using optimized neural networks[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1558925019897396. [8] SZEGEDY C, LIU W, JIA Y, et al.Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA. IEEE, 2015: 1-9. [9] 赵志勇,叶林,桑红石,等.深度学习在布匹缺陷检测中的应用[J].国外电子测量技术,2019,38(8):110-116. ZHAO Zhiyong, YE Lin, SANG Hongshi, et al. Application of deep learning in fabric defect detection[J]. Foreign Electronic Measurement Technology, 2019, 38(8): 110-116. [10] 王理顺,钟勇,李振东,等.基于深度学习的织物缺陷在线检测算法[J].计算机应用,2019,39(7):2125-2128. WANG Lishun, ZHONG Yong, LI Zhendong, et al. Online fabric defect recognition algorithm based on deep learning[J]. Journal of Computer Applications, 2019, 39(7): 2125-2128. [11] SZEGEDY C, VANHOUCKE V, LOFFE S, et al. Rethinking the inception architecture for computer vision[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 2818-2826. [12] 曹振军,景军锋,苏泽斌,等.基于树莓派的深度学习色织物疵点检测研究[J].棉纺织技术,2019,47(1):11-15. CAO Zhenjun, JING Junfeng, SU Zebin, et al. Study on the defect detection of yarn-dyed fabric with deep learning based on raspberry pi[J]. Cotton Textile Technology, 2019, 47(1): 11-15. [13] 罗俊丽,路凯.基于卷积神经网络和迁移学习的色织物疵点检测[J].上海纺织科技,2019,47(6):52-56. LUO Junli, LU Kai. Yarn-dyed fabric defect detection based on convolution neural network and transfer learning[J]. Shanghai Textile Science and Technology, 2019, 47(6): 52-56. [14] 蔡鹏,杨磊,罗俊丽.一种基于卷积神经网络模型融合的织物疵点检测方法[J].北京服装学院学报(自然科学版),2020,40(1):55-62. CAI Peng, YANG Lei, LUO Junli. Fabric defet detection method based on fusion of convolutional neural network models[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(1): 55-62. [15] 罗维平,徐洋,陈永恒,等.基于迁移学习和改进ResNet50网络的织物疵点检测算法[J].毛纺科技,2021,49(2):71-78. LUO Weiping, XU Yang, CHEN Yongheng, et al. Fabric defect detection algorithm based on migration learning and improved ResNet50 network[J]. Wool Textile Journal, 2021, 49(2): 71-78. [16] 崔春杰,景浩田,尹中信.深度学习算法在织物疵点识别中的应用研究[J].化纤与纺织技术,2021,50(1):69-71. CUI Chunjie, JING Haotian, YIN Zhongxin. Research on the application of deep learning algorithms in fabric defect recognition[J]. Chemical Fiber and Textile Technology, 2021, 50(1): 69-71. [17] 刘艳锋,郑云波,黄惠玲,等.基于卷积神经网络的织物瑕疵检测方法研究[J].信息技术与网络安全,2020,39(11):62-68. LIU Yanfeng, ZHENG Yunbo, HUANG Huiling, et al. Research on fabric defect detection method based on convolutional neural network[J]. Artificial intelligence and security, 2020, 39(11): 62-68. [18] 苏泽斌,高敏,李鹏飞,等.基于卷积神经网络的数码印花缺陷分类算法[J].激光与光电子学进展,2020,57(24):136-144. SU Zebin, GAO Min, LI Pengfei, Digital printing defect classification algorithm based on convolutional neural network[J]. Laser and Optoelectronics Progress, 2020, 57(24): 136-144. [19] 张敏,赵雪青.基于EfficientNets的织物疵点图像分类方法[J].纺织高校基础科学学报,2020,33(4):64-70. ZHANG Min, ZHAO Xueqing. EfficientNets-based method for fabric defect image classification[J]. Basic Sciences Journal of Textile Universities, 2020, 33(4): 64-70. [20] 孙羽,何志勇,张浩,等.基于DCNN的布匹疵点检测方法[J].中国科技信息,2021(2):92-95. SUN Yu, HE Zhiyong, ZHANG Hao, et al. DCNN-based cloth defect detection method[J]. China Science and Technology Information, 2021(2): 92-95. [21] 李明,景军锋,李鹏飞.应用GAN和FasterR-CNN的色织物缺陷识别[J].西安工程大学学报,2018,32(6):663-669. LI Ming, JING Junfeng, LI Pengfei. Yarn-dyed fabric defect detection based on GAN and Faster RCNN[J]. Journal of Xi'an Polytechnic University, 2018, 32(6): 663-669. [22] 安萌,郑飂默,王诗宇,等.一种改进FasterR-CNN的面料疵点检测方法[J].小型微型计算机系统,2021,42(5):1029-1033. AN Meng, ZHENG Liaomo, WANG Shiyu, et al. Fabric defect detection method based on improved Faster R-CNN[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1029-1033. [23] 陈康,朱威,任振峰,等.基于深度残差网络的布匹疵点检测方法[J].小型微型计算机系统,2020,41(4):800-806. CHEN Kang, ZHU Wei, REN Zhenfeng, et al. Fabric defect detection method based on deep residual network[J]. Journal of Chinese Computer Systems, 2020, 41(4): 800-806. [24] 晏琳,景军锋,李鹏飞.FasterRCNN模型在坯布疵点检测中的应用[J].棉纺织技术,2019,47(2):24-27. YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN mold used in gray fabric defect detection[J]. Cotton Textile Technology, 2020, 41(4): 800-806. [25] ZHOU H, JANG B, CHEN Y, et al. Exploring faster RCNN for fabric defect detection[C]// Third International Conference on Artificial Intelligence for Industries (AI4I). Irvine, CA, USA. IEEE, 2020: 52-55. [26] 廖如天.基于深度学习的异常目标识别[D].南京:东南大学,2019. LIAO Rutian. Anomaly Object Detection Based on Deep learning[D]. Nanjing: Southeast University, 2019. [27] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv, 2018: 1804.02767[cs.CV]. https://arxiv.org/abs/1804.02767. [28] 彭亚楠.基于深度学习的织物疵点检测研究[D].赣州:江西理工大学,2020. PENG Yanan. Research on Fabric Defect Detection Based on Deep Learning[D]. Ganzhou: Jiangxi University of Science and Technology. [29] 谢景洋,王巍,刘婷.基于YOLOv3算法的不同主干网络对织物瑕疵检测[J].测控技术,2021,40(3):61-66,95. XIE Jingyang, WANG Wei, LIU Ting. Fabric surface defect detection based on YOLO v3 with different backbone networks[J]. Measurement and Control Technology, 2021, 40(3): 61-66, 95. [30] 崔健.基于快速轻量卷积神经网络的织物缺陷检测算法研究[D].郑州:中原工学院,2020. CUI Jian. Researh on Fabric Defect Detection Algorithm Based on Fast Lightweight Convolutional Neural Network[D]. Zhengzhou: Zhongyuan University of Technology, 2020. [31] 黄汉林,景军锋,张缓缓,等.基于MF-SSD网络的织物疵点检测[J].棉纺织技术,2020,48(12):11-16. HUANG Hanlin, JING Junfeng, ZHANG Huanhuan, et al. Fabric defect detection based on MF-SSD network[J]. Cotton Textile Technology, 2020, 48(12): 11-16. [32] FU C Y, LIU W, RANGA A, et al. Dssd: Deconvolutional single shot detector[EB/OL]. arXiv, 2017: 1701.06659[cs.CV].https://arxiv.org/abs/1701.06659. [33] 赵亚男,吴黎明,陈琦.基于多尺度融合SSD的小目标检测算法[J].计算机工程,2020,46(1):247-254. ZHAO Yanan, WU Liming, CHEN Qi. Small object detection algorithm based on multi-scale fusion SSD[J]. Computer Engineering, 2020, 46(1): 247-254. [34] 邓宇平,王桂棠.基于GoogLeNet网络与残差网络的织物纹理分析[J].电子测量技术,2021,44(7):31-38. DENG Yuping, WANG Guitang. Fabric texture analysis based on GoogLeNet network and residual network[J]. Electronic Measurement Technology, 2021, 44(7): 31-38. [35] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT. IEEE, 2018: 4510-4520. [36] 张玮,张华熊.基于卷积神经网络的纺织面料主成分分类[J].浙江理工大学学报(自然科学版),2019,41(1):1-8. ZHANG Wei, ZHANG Huaxiong. Classification of main components of textile fabrics based on convolutional neural network[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2019, 41(1): 1-8. [37] 彭涛,彭迪,刘军平,等.基于图卷积神经网络的织物分类研究[J].计算机应用研究,2021,38(5):1581-1585,1594. PENG Tao, PENG Di, LIU Junping, et al. Fabric classification based on graph convolutional network[J]. Application Research of Computers, 2021, 38(5): 1581-1585, 1594. [38] YANG S, LIANG J, LIN M C. Learning-based cloth material recovery from video[C]// International Conference on Computer Vision. Venice. IEEE, 2017: 4383-4393. [39] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. [40] 汪坤,史伟民,李建强,等.基于深度学习的织物印花分割算法研究[J].现代纺织技术,2021,29(3):45-50. WANG Kun, SHI Weimin, LI Jianqiang, et al. Research on fabric printing segmentation algorithm based on deep learning[J]. Advanced Textile Technology, 2021, 29(2): 45-50. [41] 阿力木·安外尔,张大旭,何巍,等.基于深度学习的涂层织物折皱识别与检测[J].计算机工程与应用,2021,57(14):116-125. ALIMAnwaier, ZHANG Daxu, HE Wei, et al. Deep learning-based crease detection and examination of coated fabrics[J]. Computer Engineering and Applications, 2021, 57(14): 116-125. |