[1] 汪子翔,张坤,卫金皓,等.抗菌材料及抗菌剂的研究现状及前景展望[J].橡塑技术与装备,2021,47(12):22-29. WANG Zixiang, ZHANG Kun, WEI Jinhao, et al. The present situation and prospect of antibacterial materials and antimicrobial agents[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(12): 22-29. [2] 莫尊理,胡惹惹,王雅雯,等.抗菌材料及其抗菌机理[J].材料导报,2014,28(1):50-52,90. MO Zunli, HU Rere, WANG Yawen, et al. Review of antibacterial materials and their mechanisms[J].Materials Reports, 2014, 28(1): 50-52, 90. [3] GHEORGHIADE M,FILIPPATOS G,DE L,et al. Congestion in acute heart failure syndromes: An essential target of evaluation and treatment[J]. The American Journal of Medicine,2006,119(12): 3-10. [4] 左梦迪.基于聚乳酸抗菌材料的制备及其性能研究[D].无锡:江南大学,2020:1-4. ZUO Mengdi. Preparation and Properties of Antibacterial Materials Based on Polylactic Acid[D]. Wuxi: Jiangnan University,2020: 1-4. [5] DUVAL R E,GRARE M,DEMORE B. Fight against antimicrobial resistance: We always need new antibacterials but for right bacteria[J]. Molecules,2019,24(17): bial resistance globally[J]. Nature Microbiology, 2016,1(10): 16187. [6] SUGDEN R, KELLY R, DAVIES S. Combatting antimicrobial resisfance globally[J]. Nature Microbiology, 2016, 1(10):16187. [7] 童忠良.无机抗菌新材料与技术[M].北京:化学工业出版社,2006:1-13. TONG Zhongliang. Inorganic Antibacterial New Materials and Technologies[M].Beijing: Chemical Industry Press,2006: 1-13. [8] 高党鸽,赵洲洋,吕斌,等.超疏水抗菌表面的研究进展[J].精细化工,2021,38(5):874-881. GAO Dangge,ZHAO Zhouyang,LÜ Bin,et al. Research process of superhydrophobic antibacterial surfaces[J].Fine Chemicals,2021,38(5): 874-881. [9] 张耀成,吴勇振,李阳,等.双季铵盐改性医用PVC抗菌材料[J].中国塑料,2021,35(7):53-57. ZHANG Yaocheng,WU Yongzhen,LI Yang,et al. Gimini quaternary ammonium salt-modified PVC-based antibacterial materials for medical use[J].China Plastics,2021,35(7): 53-57. [10] 黄健,唐世刚,杨云锋.基于贻贝仿生的抑菌性超滤膜的制备及其分离性能[J].化工新型材料,2021,49(1):264-268. HUANG Jian,TANG Shigang,YANG Yunfeng. Fabrication and performance of anti-bacterial ultrafiltration membrane based on mussel-inspired technology[J].New Chemical Materials,2021,49(1): 264-268. [11] GAO Q,LI P,ZHAO H Y,et al. Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings[J]. Polymer Chemistry,2017,8(41): 6386-6397. [12] FIK CP,KRUMM C,MUENNIG C,et al. Impact of functional satellite groups on the antimicrobial activity and hemocompatibility of telechelic poly(2-methyloxa-zoline)s[J]. Biomacromolecules,2012,13(1): 165-172. [13] SU Y J,ZHI Z,GAO Q,et al. Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies[J]. Advanced Healthcare Materials,2017,6(6): 1601173. [14] GRAHAM M V,CADY N C. Nano and microscale topographies for the prevention of bacterial surface fouling[J]. Coatings,2014,4(1): 37-59. [15] 谢远.仿生纳米结构的制备及其物理杀菌性能研究[D].成都:西南交通大学,2020:1-21. XIE Yuan.Construction of Bioinspired Nanostructures and Their Physical Bactericidal Behavious[D]. Chengdu: Southwest Jiaotong University,2020: 1-21. [16] 严小飞.木棉纤维天然特性及其防螨功能性织物的技术研究[D].上海:东华大学,2015:31-38. YAN Xiaofei. Study on the Natural Characteristics of Kapok Fiber and the Technology of Its Anti-mite Functional Tedtiles[D].Shanghai: Donghua University,2015: 31-38. [17] 邵松生.麻类纺织品的开发前景[J].纺织导报,2000(1):66-68. SHAO Songsheng.Development prospect of hemp textiles[J].China Textile Leader,2000(1): 66-68. [18] 尹晓娇.木棉纤维的微细结构及破损机理研究[D].上海:东华大学,2015:19-21. YIN Xiaojiao.Study on the Microstructure and Fracture Mechanism of Kapok Fiber[D].Shanghai: Donghua University,2015: 19-21. [19] 王府梅,徐光标.木棉多功能纺织品的制造关键技术与产业化[Z].上海:三弘集团有限公司,东华大学,浙江飞弘羽绒制品有限公司,2013. WANG Fumei,XU Guangbiao. Key technology and industrialization of manufacturing multifunctional textiles of kapok[Z]. Shanghai: Sanhong Group Co.,Donghua University,Zhejiang Feihong Down Products Co.,2013. [20] SUN M, WATSON G S, ZHENG Y, et al. Wetting properties on nanostructured surfaces of cicada wings[J]. Journal of Experimental Biology,2009,212(19): 3148-3155. [21] FISHER L E, YANG Y, YUEN M F, et al. Bactericidal activity of biomimetic diamond nanocone surfaces[J]. Biointerphases,2016,11(1): 11-14. [22] 周永凯,张建春,张华.大麻纤维的抗菌性及抗菌机制[J].纺织学报,2007,28(6):12-15. ZHOU Yongkai,ZHANG Jianchun,ZHANG Hua. Bacteria resistant property of hemp fiber and its anti-bacterial mechanism[J].Journal of Textile Research,2007,28(6): 12-15. [23] EPSTEIN A K, HONG D, KIM P, et al. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces[J]. New Journal of Physics,2013,15(9): 095018. [24] BHUSHAN B. Bioinspired structured surfaces[J]. Langmuir,2012,28 (3): 1698-1714. [25] 周颖.低维纳米结构氧化锌的抗菌机理及其调控技术研究[D].成都:西南交通大学,2020:14-18. ZHOU Ying.Antibacterial Mechanism of Low-dimensional Nanostructured ZnO Crystals and Their Regulation Technology[D]. Chengdu: Southwest Jiaotong University,2020: 14-18. [26] 弯艳玲,丛茜,金敬福,等.蜻蜓翅膀微观结构及其润湿性[J].吉林大学学报(工学版),2009,39(3):732-736. WAN Yanling,CONG Qian,JIN Jingfu,et al. Microstructure and wettability of dragonfly wings[J]. Journal of Jilin University (Engineering and Technology Edition),2009,39(3): 732-736. [27] IVANOVA E P, HASAN J, WEBB H K, et al. Bactericidal activity of black silicon[J]. Nature Communications,2013(4): 2838. [28] VIELA F, NAVARROBAENA I, HERNANDEZ J J, et al. Moth-eye mimetic cytocompatible bactericidal nanotopography: A convergent design[J]. Bioinspiration & Biomimetics,2018,13(2): 026011. [29] GREEN D W,LEE K H,WATSON J A,et al. High quality bioreplication of intricate nanostructures from a fragile gecko skin surface with bactericidal properties[J]. Scientific Reports,2017,7(1):41023. [30] OH J K,LU X,MIN Y,et al. Bacterially antiadhesive,optically transparent surfaces inspired from rice leaves[J]. ACS Applied Materials & Interfaces,2015,7(34):19274-19281. [31] 刘呈坤,江志威,毛雪,等.常见抗菌材料的研究进展[J].西安工程大学学报,2020,34(2):37-46. LIU Chengkun,JIANG Zhiwei,MAO Xue,et al. Research progress of common antibacterial materials[J]. Journal of Xi'an Polytechnic University,2020,34(2):37-46. [32] 郭秋菊,冯安平,陈开明,等.金黄色葡萄球菌生物膜形成过程的研究进展[J].中国当代医药,2020,27(25):23-26. GUO Qiuju,FENG Anping,CHEN Kaiming,et al. Research progress on the formation process of Staphylococcus aureusbiofilm[J].China Modern Medicine,2020,27(25):23-26. [33] 李淑一.仿生结构化超疏水表面的构筑与抗菌应用[D].长春:吉林大学,2018:3-12. LI Shuyi. Construction of the Bionic-structured Superhydrophobic Surface and Antimicrobial Application[D]. Changchun:Jinlin University,2018:3-12. [34] XIE L Y,HONG F,LIU J H,et al. Intergrated design and study of marine antifouling polymer materials[J]. Acta Polymerica Sinica,2012, 12 (1):1-13. [35] LICHTER J A, VANVLIET K J,RUBNER M F. Design of antibacterial surfaces and interfaces:Polyelectrolyte multilayers as a multifunctional platform[J]. Macromolecules,2009,42(22):8573-8586. [36] 胡杰涛.仿生MPS/Ag复合微球的构筑及其在抗细菌黏附性超润湿表面的研究[D].广州:广州大学,2020:3-9. HU Jietao. Construction of Bionic MPS/Ag Composite Microspheres and Their Study on Anti-bacterial Adhesion Superwetting Surface[D]. Guangzhou:Guangzhou University,2020:3-9. [37] YANG H, YOU W, SHEN Q, et al. Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles[J]. RSC Advances,2013,4(6):2793-2796. [38] ZHANG X,WANG L,LEVANEN E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances,2013,3(30):12003. [39] CRICK C R,ISMAIL S,PRATTEN J,et al. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition[J]. Thin Solid Films,2011,519(11):3722-3727. [40] BILEK M M, MCKENZIE D R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers:Towards better biosensors and a new generation of medical implants[J]. Biophysical Reviews,2010,2 (2):55-65. [41] 严小飞,王茜,周梦岚,等.木棉纤维抗菌性及抗菌机理分析[J].棉纺织技术,2015,43(3):15-18. YAN Xiaofei,WANG Qian,ZHOU Menglan,et al. Antibacterial property andantibacterial mechanism analysis of kapok fiber[J]. Cotton Textile Technology,2015,43(3):15-18. [42] POGODIN S, HASAN J, BAULIN V A, et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces[J]. Biophysical Journal,2013,104(4):835-840. [43] 裴阳阳,宋青,李鹏.仿生微纳结构抗菌表面研究进展[J].表面技术,2019,48(7):200-210. PEI Yangyang,SONG Qing,LI Peng. Research Progress of Biomimetic Micro/Nano-structured Antibacterial Surfaces[J].Surface Technology,2019,48(7):200-210. [44] IVANOVA E P,HASAN J,WEBB H K,et al. Natural bactericidal surfaces:Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings[J]. Small,2012,8(16):2489-2494. [45] CHEESEMAN S,TRUONG V K,WALTER V,et al. Interaction of giant unilamellar vesicles with the surface nanostructures on dragonfly wings[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(6):2422-2430. [46] KE Z,MA Y L,ZHU Z J,et al. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide[J]. Applied Physics Letters,2018,112(1):013701. [47] BANDARA C D, SINGH S, AFARA I O, et al. Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli[J]. ACS Applied Materials & Interfaces,2017,9(8):6746-6760. [48] LINKLATER D P,JUODKAZIS S,RUBANOV S,et al. Comment on "Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli"[J]. ACS Applied Materials & Interfaces,2017,9(35):29387-29393. [49] DAS S,SINHA S,SUAR M,et al. Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites[J]. Journal of Photochemistry and Photobiology B:Biology,2015,142:68-76. [50] DIZAJ S M,LOTFIPOUR F,BARZEGAR-JALALI M,et al. Antimicrobial activity of the metals and metal oxide nanoparticles[J]. Materials Science and Engineering:C,2014,44:278-284. [51] MCEVOY J G, ZHANG Z. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2014,19:62-75. [52] WANG W, LI G, XIA D, et al. Photocatalytic nanomaterials for solar-driven bacterial inactivation:recent progress and challenges[J]. Environmental Science:Nano,2017,4(4):782-799. [53] PAN X, WANG Y, CHEN Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2[J]. ACS Applied Materials & Interfaces,2013,5(3):1137-1142. [54] 马建中,惠爱平,刘俊莉.纳米ZnO抗菌材料的研究进展[J].功能材料,2014,45(24):24001-24007. MA Jianzhong,HUI Aiping,LIU Junli. Research progress on antibacterial materials of nano-ZnO[J].Journal of Functional Materials,2014,45(24):24001-24007. [55] LI Y, ZHANG W, NIU J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano,2012,6(6):5164-5173. [56] TRIPATHY A, SEN P, SU B, et al. Natural and bioinspired nanostructured bactericidal surfaces[J]. Advances in Colloid and Interface Science,2017,248:85-104. [57] 蔡彬,胡炜,杜宝吉,等.模板法及其在纳米材料制备领域的应用研究进展[J].材料导报,2010,24(15):107-112. CAI Bin,HU Hui,DU Baoji,et al. Research progress of template-methods and its application in nano-materials[J].Materials Reports, 2010, 24(15):107-112. [58] LI X, CHEUNG G S, WATSON G S, et al. The nanotipped hairs of gecko skin andbiotemplated replicas impair and/or kill pathogenic bacteria with high efficiency[J].Nanoscale, 2016, 8(45):18860-18869. [59] MICHALSKA M, GAMBACORTA F, DIVAN R, et al. Tuning antimicrobial properties of biomimetic nanopatterned surfaces[J]. Nanoscale,2018,10(14):6639-6650. [60] DICKSON M N, LIANG E I, RODRIGUEZ L A, et al. Nanopatterned polymer surfaces with bactericidal properties[J]. Biointerphases,2015,10(2):021010. [61] EPSTEIN A K, HOCHBAUM A, KIM P, et al. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry[J]. Nanotechnology, 2011, 22(49): 494007. [62] LI J, TAN L, LIU X M, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/ arginine-glycine-aspartic acid-cysteine nanorods[J]. ACS Nano, 2017,11(11):11250-11263. [63] VAFAEI S, TUCK C, ASHCROFT I, et al. Surface microstructuring to modify wettability for 3D printing of nano-filled inks[J]. Chemical Engineering Research and Design,2016,109:414-420. [64] YI G, YUAN Y, LI X K, et al. ZnO nanopillar coated surfaces with substrate-dependent superbactericidal property[J]. Small,2018,14(14):1703159. [65] 汤亚男.半导体基仿生纳米材料的制备及性质研究[D].长春:吉林大学,2019:13-17,41. TANG Yanan. Preparation and Property Study of Bio-inspired Semiconductor Nanomaterials[D].Changchun:Jinlin University,2019:13-17,41. [66] ZHANG M, ZHANG T, CUI T H. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings[J]. Langmuir,2011,27(15):9295-9301. [67] YU X, ZHAO Z H, ZHANG J, et al. One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis[J]. CrystEngComm,2017,19(1):129-136. [68] 叶敬.双仿生双层纳米抗菌阵列对植入物表面的修饰及应用[D].南昌:南昌大学,2019:2-9. YE Jing. Cicada &Catkin Inspired Dual Biomimetic Antibacterial Structure forthe Surface Mmodification of Implant Material[D]. Nanchang:Nanchang University,2019:2-9. [69] 王誉茜.基于昆虫翅表面微观结构的仿生材料制备及其抑菌性研究[D].长春:长春师范大学,2018:8-10. WANG Yuqian. Preparation and Bacteriostatic Property of Biomimetic Materials Based on Microstructure of Insect Wing Surface[D]. Changchun:Changchun Normal University,2018:8-10. [70] 潘晓倩,成晓瑜,张顺亮,等.不同检测方法在抗菌肽抑菌效果评价的比较研究[J].肉类研究,2014,28(12):17-20. PAN Xiaoqian,CHENG Xiaoyu,ZHANG Shunliang,et al. Comparison of Activity Assays for Antimicrobial Peptides[J].Meat Research,2014,28 (12):17-20. [71] 陈月开,徐军,曲运波,等.氨基酸的抑菌作用研究[J].中国生化药物杂志,2001,21(1):29-30. CHEN Yuekai,XU Jun,QU Yunbo,et al. Study on bacteria-inhibiting effect of amino acids[J].Chinese Journal of Biochemical and Pharmaceuticals,2001,21(1):29-30. [72] ALLEN N E,NICAS T I. Mechanism of action of oritavancin and related glycopeptide antibiotics[J]. Fems Microbiology Reviews,2003,26 (5):511-532. [73] SUN H,ZENG S,HE Q,et al. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity[J]. Dalton Transactions,2017,46(12):3887-3894. [74] 王玉梅,冀海伟,常通,等.Au/TiO2复合物的制备、表征及其增强光催化灭菌活性[J].化工进展, 2020,39(5):1857-1865. WANG Yumei,JI Haiwei,CHANG Tong,et al. Preparation, characterization and enhanced photocatalytic sterilization activity of Au/TiO2 composite[J].Chemical Industry and Engineering Progress,2020,39(5):1857-1865. |