Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (6): 231-241.DOI: 10.19398/j.att.202204046
• Comprehensive Review • Previous Articles Next Articles
WEI Zhiyi, WANG Hui, YU Tianpei, CHENG Hui, MA Xin, LI Shouzhu
Received:
2022-04-22
Online:
2022-11-10
Published:
2022-11-16
卫智毅, 王慧, 余天培, 程辉, 马信, 李守柱
通讯作者:
李守柱,E-mail:2016014@xjit.edu.cn
作者简介:
卫智毅(1990—),男,河南洛阳人,讲师,硕士,主要从事无机纳米纤维气凝胶方面的研究。
基金资助:
CLC Number:
WEI Zhiyi, WANG Hui, YU Tianpei, CHENG Hui, MA Xin, LI Shouzhu. Research progress of silica-based nanofiber aerogels[J]. Advanced Textile Technology, 2022, 30(6): 231-241.
卫智毅, 王慧, 余天培, 程辉, 马信, 李守柱. 二氧化硅基纳米纤维气凝胶的研究进展[J]. 现代纺织技术, 2022, 30(6): 231-241.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202204046
[1] FAN L, ZHU B, SU P C, et al. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities[J]. Nano Energy, 2018, 45: 148-176. [2] AMONETTE J E, MATYÁ? J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review[J]. Microporous and Mesoporous Materials, 2017, 250: 100-119. [3] ZU G, SHEN J, WANG W, et al. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5400-5409. [4] CAI H, JIANG Y, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials & Design, 2020, 191: 108640. [5] ZHANG X, ZHOU J, ZHENG Y, et al. Graphene-based hybrid aerogels for energy and environmental applications[J]. Chemical Engineering Journal, 2021, 420: 129700. [6] 王雪琴.弹性二氧化硅基纳米纤维气凝胶的制备及功能化应用研究[D].上海:东华大学,2018. WANG Xueqin. Fabrication and Functional Applications of Superelastic Silica Nanofiber Based Aerogels[D]. Shanghai: Donghua University, 2018. [7] REZAEI S, ZOLALI A M, JALALI A, et al. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor[J]. Journal of Colloid and Interface Science, 2020, 561: 890-901. [8] WANG H, LI Q, GAO Y, et al. Strain effects on borophene: ideal strength, negative Possion's ratio and phonon instability[J]. New Journal of Physics, 2016, 18(7): 073016. [9] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127: 741. [10] PERI J. Infrared study of OH and NH2 groups on the surface of a dry silica aerogel[J]. The Journal of Physical Chemistry, 1966, 70(9): 2937-2945. [11] TAMON H, KITAMURA T, OKAZAKI M. Preparation of silica aerogel from TEOS[J]. Journal of Colloid and Interface Science, 1998, 197(2): 353-359. [12] NAKANISHI K, MINAKUCHI H, SOGA N, et al. Double pore silica gel monolith applied to liquid chroma-tography[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1): 547-552. [13] HUNT A J. Light-scattering studies of silica aerogels[R]. Lawrence Berkeley Lab, CA(USA), 1983. [14] HEGDE N D, RAO A V. Physical properties of methyltri-methoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process[J]. Journal of Materials Science, 2007. 42(16): 6965-6971. [15] RAO A V, KULKARNI M M, PAJONK G M, et al. Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor[J]. Journal of Sol-Gel Science and Technology, 2003, 27(2): 103-109. [16] BRINKER C J, SCHERER G W. Sol-gel science: The Physics and Chemistry of Sol-gel Processing[M]. Cambridge, Massachusetts: Academic Press, 2013. [17] MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74. [18] HUANG X, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. [19] JIANG L, KATO K, MAYUMI K, et al. One-pot synthesis and characterization of polyrotaxane-silica hybrid aerogel[J]. ACS Macro Letters, 2017, 6(3): 281-286. [20] ZU G, KANAMORI K, MAENO A, et al. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J]. Angewandte Chemie International Edition, 2018, 130(31): 9870-9875. [21] LIU Y, DONG X, BAO K, et al. Effective removal of cationic dyes in water by polyacrylonitrile/silica aerogel/modified antibacterial starch particles/zinc oxide beaded fibers prepared by electrospinning[J]. Journal of Environ-mental Chemical Engineering, 2021, 9(6): 106801. [22] SI Y, WANG X, DOU L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4: eaas8925. [23] DONG X, LIU J, HAO R, et al. High-temperature elasticity of fibrous ceramics with a bird's nest structure[J]. Journal of the European Ceramic Society, 2013, 33(15-16): 3477-3481. [24] ZU G, KANAMORI K, SHIMIZU T, et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators[J]. Chemistry of Materials, 2018, 30(8): 2759-2770. [25] ZU G, SHIMIZU T, KANAMORI K, et al. Transparent, superflexible doubly cross-linked polyvinylpolymethylsi-loxane aerogel superinsulators via ambient pressure drying[J]. ACS Nano, 2018, 12(1): 521-532. [26] LIU D, CHEN C, ZHOU Y, et al. 3D-printed, high-porosity, high-strength graphite aerogel[J]. Small Methods, 2021, 5(7): 2001188. [27] GAREMARK J, YANG X, SHENG X, et al. Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization[J]. ACS Nano, 2020, 14(6): 7111-7120. [28] PENG M, JIA H, JIANG L, et al. Study on structure and property of PP/TPU melt-blown nonwovens[J]. The Journal of The Textile Institute, 2019, 110(3): 468-475. [29] LIN J, YUAN X, LI G, et al. Self-assembly of porous boron nitride microfibers into ultralight multifunctional foams of large sizes[J]. ACS Applied Materials &Interfaces, 2017, 9(51): 44732-44739. [30] SU L, WANG H, NIU M, et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel[J]. ACS Nano, 2018, 12(4): 3103-3111. [31] SU X, ZHU G, SONG X, et al. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits in sea island cotton(Gossypium barbadense)[J]. BMC Plant Biology, 2020, 20(1): 1-11. [32] 杜晨辉,夏磊,刘亚,等.闪蒸纺超细纤维非织造布应用研究[J].非织造布,2008,16(2):27-30. DU Chenhui, XIA Lei, LIU Ya, et al. Application and researches of flash spinning superfine fiber nonwovens[J]. Nonwovens, 2008, 16(2): 27-30. [33] LUZ G M, MANO J F. Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications[J]. Nanotechnology, 2011, 22(49): 494014. [34] LI K, KOU H, NING C. Sintering and mechanical properties of lithium disilicate glass-ceramics prepared by sol-gel method[J]. Journal of Non-Crystalline Solids, 2021, 552: 120443. [35] DUAN N, ZHANG X, LU C, et al. Effect of rheological properties of AlOOH sol on the preparation of Al2O3nanofiltration membrane by sol-gel method[J]. Ceramics International, 2022, 48(5): 6528-6538. [36] WANG G, LIU D, FAN S, et al. High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor[J]. Nanotechnology, 2021, 32(21): 215202. [37] LINHARES T, DE AMORIM M T P, Durães L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications[J]. Journal of Materials Chemistry A, 2019, 7(40): 22768-22802. [38] HUANG B, CHANGHE L I, ZHANG Y, et al. Advances in fabrication of ceramic corundum abrasives based on sol-gel process[J]. Chinese Journal of Aeronautics, 2021, 34(6): 1-17. [39] LI L, LIU X, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review[J]. Chemical Engineering Journal, 2021, 421: 127744. [40] JIANG J, NI N, HAO W, et al. Effects of sintering atmosphere on the densification and microstructure of yttrium aluminum garnet fibers prepared by sol-gel process[J]. Journal of the European Ceramic Society, 2019, 39(16): 5332-5337. [41] RAUCCI M G, GUARINO V, AMBROSIO L. Hybrid composite scaffolds prepared by sol-gel method for bone regeneration[J]. Composites Science and Technology, 2010, 70(13): 1861-1868. [42] BUDNYAK T M, PYLYPCHUK I V, TERTYKH V A, et al. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method[J]. Nanoscale Research Letters, 2015, 10(1): 1-10. [43] DURÃES L, OCHOA M, PORTUGAL A, et al. Tailored silica based xerogels and aerogels for insulation in space environments. Advances in Science and Technology[J]. Trans Tech Publications Ltd, 2010, 63: 41-46. [44] RAO A P, RAO A V, GURAV J L. Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor[J]. Journal of Porous Materials, 2008, 15(5): 507-512. [45] STRØM R A, MASMOUDI Y, RIGACCI A, et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology, 2007, 41(3): 291-298. [46] BISSON A, RIGACCI A, LECOMTE D, et al. Drying of silica gels to obtain aerogels: phenomenology and basic techniques[J]. Drying Technology, 2003, 21(4): 593-628. [47] TIMUSK M, KANGUR T, LOCS J, et al. Aerogel-like silica powders by combustion of sol-gel derived alcogels[J]. Microporous and Mesoporous Materials, 2021, 315: 110895. [48] WU S, LI L, XUE H, et al. Size controllable, trans-parent, and flexible 2D silver meshes using recrystallized ice crystals as templates[J]. ACS Nano, 2017, 11(10): 9898-9905. [49] LI X, DONG G, LIU Z, et al. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy[J]. ACS Nano, 2021, 15(3): 4759-4768. [50] NAZRIATI N, SETYAWAN H, AFFANDI S, et al. Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2014, 400: 6-11. [51] CATAURO M, CIPRIOTI S V. Characterization of hybrid materials prepared by sol-gel method for biomedical implementations: A critical review[J]. Materials, 2021, 14(7): 1788. [52] ZHONG Y, ZHANG J, WU X, et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1): 129-134. [53] SHI M, TANG C, YANG X, et al. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures[J]. RSC Advances, 2017, 7(7): 4039-4045. [54] MONFARED M, TAGHIZADEH S, ZAREHOSEINABADI A, et al. Emerging frontiers in drug release control by core-shell nanofibers: A review[J]. Drug Metabolism Reviews, 2019, 51(4): 589-611. [55] LUK H T, MONDELLI C, FERRé D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. [56] 丁彬,俞建勇.功能静电纺纤维材料[M].北京:中国纺织出版社,2019:4-11. DING Bin, YU Jianyong. Functional Electorspun Fibrous Materials[M]. Beijing: China Textile & Apparel Press, 2019: 4-11. [57] SHENG J, ZHANG M, LUO W, et al. Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application[J]. RSC Advances, 2016, 6(35): 29629-29637. [58] ZHU S, NIE L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 28-56. [59] MI H Y, JING X, HUANG H X, et al. Instantaneous self-assembly of three-dimensional silica fibers in electrospinning: Insights into fiber deposition behavior[J]. Materials Letters, 2017, 204: 45-48. [60] XU W, ZHU Y, RAVICHANDRAN D, et al. Review of fiber-based three-dimensional printing for applications ranging from nanoscale nanoparticle alignment to macroscale patterning[J]. ACS Applied Nano Materials, 2021, 4(8): 7538-7562. [61] SI Y, MAO X, ZHENG H, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. Rsc Advances, 2015, 5(8): 6027-6032. [62] ZHENG H, SHAN H, BAI Y, et al. Assembly of silica aerogels within silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015, 5(111): 91813-91820. [63] JONES S M. Aerogel: Space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2): 351-357. [64] RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications[J]. ACS Applied Materials &Interfaces, 2011, 3(3): 613-626. [65] KAUFMANN E, HAGERMANN A. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps[J]. Icarus, 2017, 282: 118-126. [66] WORDSWORTH R, KERBER L, COCKELL C. Enabling Martian habitability with silica aerogel via the solid-state greenhouse effect[J]. Nature Astronomy, 2019, 3(10): 898-903. [67] YASMEEN R, ALI S Z, BAIG Z, et al. A mini-review for causes, effects and preventive measures of choking smog[J]. Iranian Journal of Health, Safety and Environ-ment, 2022, 7(3): 1523-1528. [68] FANG D, CHEN B, HUBACEK K, et al. Clean air for some: Unintended spillover effects of regional air pollution policies[J]. Science Advances, 2019, 5(4): eaav4707. [69] HEFT-NEAL S, BURNEY J, BENDAVID E, et al. Robust relationship between air quality and infant mortality in Africa[J]. Nature, 2018, 559(7713): 254-258. [70] PARDO-FIGUEREZ M, CHIVA-FLOR A, Figueroa-Lopez K, et al. Antimicrobial nanofiber based filters for high filtration efficiency respirators[J]. Nanomaterials, 2021, 11(4): 900. [71] LI Y, CAO L, YIN X, et al. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5[J]. Advanced Functional Materials, 2020, 30(14): 1910426. [72] WANG F, SI Y, YU J, et al. Tailoring nanonetsenginee-red superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration[J]. Advanced Functional Materials, 2021, 31(49): 2107223. [73] YUAN J, GAO R, WANG Y, et al. A novel hydrophobic adsorbent of electrospun SiO2@ MUF/PAN nanofibrous membrane and its adsorption behaviour for oil and organic solvents[J]. Journal of Materials Science, 2018, 53(24): 16357-16370. [74] WANG X, DOU L, LI Z, et al. Flexible hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate[J]. ACS Applied Materials &Interfaces, 2016, 8(50): 34668-34676. [75] WEI W, HU H, JI X, et al. Selective adsorption of organic dyes by porous hydrophilic silica aerogels from aqueous system[J]. Water Science and Technology, 2018, 78(2): 402-414. [76] MATIAS T, MARQUES J, CONCEI?ÃO F, et al. Towards improved adsorption of phenolic compounds by surface chemistry tailoring of silica aerogels[J]. Journal of Sol-Gel Science and Technology, 2017, 84(3): 409-421. [77] FIROOZMANDAN M, MOGHADDAS J, YASREBI N. Performance of water glass-based silica aerogel for adsorption of phenol from aqueous solution[J]. Journal of Sol-Gel Science and Technology, 2016, 79(1): 67-75. [78] ZHOU G, WANG K, LIU R, et al. Synthesis and CO2 adsorption performance of TEPA-loaded cellulose whisker/silica composite aerogel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127675. [79] WILSON S, GABRIEL V A, TEZEL F H. Adsorption of components from air on silica aerogels[J]. Microporous and Mesoporous Materials, 2020, 305, 110297. [80] GORLE B S K, SMIRNOVA I, MCHUGH M A. Adsorption and thermal release of highly volatile compounds in silica aerogels[J]. The Journal of Supercritical Fluids, 2009, 48(1): 85-92. [81] YUE X, LI Z, ZHANG T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309. [82] WANG Y, WANG J, DING Y, et al. In situ generated micro-bubbles enhanced membrane antifouling for separa-tion of oil-in-water emulsion[J]. Journal of Membrane Science, 2021, 621: 119005. [83] MARMUR A, DELLA VOLPE C, SIBONI S, et al. Contact angles and wettability: Towards common and accurate terminology[J]. Surface Innovations, 2017, 5(1): 3-8. [84] CHAUHAN P, KUMAR A, BHUSHAN B. Self-cleaning, stain-resistant and anti-bacterial superhydrop-hobic cotton fabric prepared by simple immersion technique[J]. Journal of Colloid and Interface Science, 2019, 535: 66-74. [85] SHANG Y, SI Y, RAZA A, et al. An in situ polyme-rization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water sepa-ration[J]. Nanoscale, 2012, 4(24): 7847-7854. [86] TANG X, SI Y, GE J, et al. In situ polymerized superhydrophobic and superoleophilic nanofibrous mem-branes for gravity driven oil-water separation[J]. Nanos-cale, 2013, 5(23): 11657-11664. [87] HAI A, DURRANI A A, SELVARAJ M, et al. Oil-water emulsion separation using intrinsically superoleophilic and superhydrophobic PVDF membrane[J]. Separation and Purification Technology, 2019, 212: 388-395. [88] SI Y, FU Q, WANG X, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions[J]. ACS Nano, 2015, 9(4): 3791-3799. [89] LIU X, ZHANG T, ZHANG L. Microwave-induced catalytic application of magnetically separable strontium ferrite in the degradation of organic dyes: Insight into the catalytic mechanism[J]. Separation and Purification Technology, 2018, 195: 192-198. [90] LIU Y, SONG Z, WANG W, et al. A CuMn2O4/g-C3N4 catalytic ozonation membrane reactor used for water purification: Membrane fabrication and performance evaluation[J]. Separation and Purification Technology, 2021, 265: 118268. [91] HE C, LIAO Y, CHEN C, et al. Realizing a redox-robust Ag/MnO2catalyst for efficient wet catalytic ozonation of S-VOCs: Promotional role of Ag(0)/Ag(I)-Mn based redox shuttle[J]. Applied Catalysis B: Environmental, 2022, 303: 120881. [92] GUAN H, CHAO C, KONG W, et al. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol[J]. Journal of Nanoparticle Research, 2017, 19(6): 1-11. [93] WANG X, DOU L, YANG L, et al. Hierarchical structured MnO2@ SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance[J]. Journal of Hazardous Materials, 2017, 324: 203-212. [94] YI Z, ZHAO S, ZHANG J, et al. Discrete silver nanoparticle infusion across silica aerogels towards versatile catalytic coatings for 4-nitrophenol reduction[J]. Materials Chemistry and Physics, 2019, 223: 404-409. [95] PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266. [96] LIN J, LI G, LIU W, et al. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications[J]. Journal of Materials Science, 2021, 56(18): 10812-10833. [97] CAO F, HUANG Y, WANG F, et al. A highperfor-mance electrochemical sensor for biologically meaningful L-cysteine based on a new nanostructured L-cysteine electrocatalyst[J]. Analytica Chimica Acta, 2018, 1019: 103-110. [98] FOROUSHANI F T, TAVANAI H, RANJBAR M, et al. Fabrication of tungsten oxide nanofibers via electrospinning for gasochromic hydrogen detection[J]. Sensors and Actuators B: Chemical, 2018, 268: 319-327. [99] BAI S, FU H, ZHAO Y, et al. On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to enhance the NO2 sensing properties[J]. Sensors and Actuators B: Chemical, 2018, 266: 692-702. [100] SI Y, WANG X, YAN C, et al. Ultralight biomassde-rived carbonaceous nanofibrous aerogels with superelas-ticity and high pressure-sensitivity[J]. Advanced Materials, 2016, 28(43): 9512-9518. [101] SI Y, WANG L, WANG X, et al. Ultrahigh-water-content, superelastic, and shape-memory nanofiberas-sembled hydrogels exhibiting pressure-responsive conduc-tivity[J]. Advanced Materials, 2017, 29(24): 1700339. |
[1] | ZHOU Xinru, HU Chengye, FAN Mengjing, HONG Jianhan, HAN Xiao. Continuous preparationand properties of nanofiber core-spun yarn based on water bath electrospinning [J]. Advanced Textile Technology, 2022, 30(6): 80-87. |
[2] | WU Mingxing, WANGJinqian, GE Yanfang. Construction and properties of micro/nano water repellent surface of modified cotton fabrics [J]. Advanced Textile Technology, 2022, 30(5): 197-205. |
[3] | LI Xiao, LIU Yuanjun, ZHAO Xiaoming. Research progress of electrospinning nanofiber-based sound-absorbing materials [J]. Advanced Textile Technology, 2022, 30(5): 246-258. |
[4] | YI Wen, CHEN Yifei, ZHAO Mingming, YAN Tao, PAN Zhijuan. Research progress of flexible resistance-type strain sensor based on conductive composite yarns [J]. Advanced Textile Technology, 2022, 30(4): 12-23. |
[5] | SHI Min, WANG Tao, WANG Sheng. Properties and preparation of PVDF/PDMS superhydrophobic membrane for rapid oil-water separation by one-step method [J]. Advanced Textile Technology, 2022, 30(4): 108-114. |
[6] | SCHEN Chunhui, XU Duo, LI Zhijiang, JI Qiang. Preparation and properties of hydrophobic-oleophylic composite cotton fabrics [J]. Advanced Textile Technology, 2022, 30(4): 115-123. |
[7] | WEI Yue, WANG Sheng, JI Lülü. Synthesis of nickel sulfide-based carbon nanofibers for electrocatalytic hydrogen evolution reaction [J]. Advanced Textile Technology, 2022, 30(3): 81-88. |
[8] | JIA Ziqi, WANG Chen, ZHAO Tiantian, LIU Yang. Preparation and photocatalytic performance of N-doped graphene oxide/TiO2/PAN composite nanofiber membranes [J]. Advanced Textile Technology, 2022, 30(3): 97-107. |
[9] | YAN Xiaofei, FANG Jie, ZHU Chenkai, LI Jiawei, ZHU Chengyan, QI Dongmin. Preparation and properties of two-dimensional material MXene (Ti3C2Tx)and Its application in textile field [J]. Advanced Textile Technology, 2022, 30(2): 1-8. |
[10] | HE Xianwei. Strategies for textile color innovative design in the era of color economy [J]. Advanced Textile Technology, 2022, 30(2): 113-117. |
[11] | LIU Xiulong, WANG Yunyi. Research progress on preparation of alginate fiber and its application in textiles [J]. Advanced Textile Technology, 2022, 30(1): 26-35. |
[12] | ZHOU Rongxin, GE Yeqian. Preparation and electrochemical properties of carbon nanofiber anode materials [J]. Advanced Textile Technology, 2022, 30(1): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||