[1]ZHANG A, LIU Y, ZHAO B, et al. Indoor PM2.5 concentrations in China: A concise review of the literature published in the past 40 years[J]. Building and Environ-ment, 2021, 198: 107898.[2]TIAN E, XIA F, WU J, et al. Electrostatic air filtration by multifunctional dielectric heterocaking filters with ultralow pressure drop[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29383-29392.
[3]FENG Z, CAO S J. A newly developed electrostatic enhanced pleated air filters towards the improvement of energy and filtration efficiency[J]. Sustainable Cities and Society, 2019, 49: 101569.
[4]TIAN E, MO J. Toward energy saving and high efficiency through an optimized use of a PET coarse filter: The deve-lopment of a new electrostatically assisted air filter[J]. Energy and Buildings, 2019, 186: 276-283.
[5]MO J, TIAN E, PAN J. New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment[J]. Sustainable Cities and Society, 2020, 55: 102063.
[6]CHEN Z, TIAN E, MO J. Removal of gaseous DiBP and DnBP by ionizer-assisted filtration with an external electros-tatic field[J]. Environmental Pollution, 2020, 267: 115591.
[7]TIAN E, YU Q, GAO Y, et al. Ultralow resistance two-stage electrostatically assisted air filtration by polydopamine coated PET coarse filter [J]. Small, 2021, 17(33): 2102051.
[8]CHOI D Y, AN E J, JUNG S-H, et al. Al-coated conductive fiber filters for high-efficiency electrostatic filtration: Effects of electrical and fiber structural properties[J]. Scientific Reports, 2018, 8: 5747.
[9]XIA F, GAO Y, TIAN E, et al. Fast fabricating cross-linked nanofibers into flameproof metal foam by air-drawn electrospinning for electrostatically assisted particle removal[J]. Separation and Purification Technology, 2021, 274: 119076.
[10]KIM M-W, AN S, SEOK H, et al. Transparent metallized microfibers as recyclable electrostatic air filters with Ionization[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25266-25275.
|