[1] 王葎菲,朱伟刚,罗坚义,等.基于柔性传感技术的中医脉诊信息采集手套的研制[J]. 现代纺织技术,2024, 32(2):1-8.
WANG Lüfei, ZHU Weigang, LUO Jianyi, et al. Development of traditional Chinese medicine pulse diagnosis information collection gloves based on flexible sensing technology[J]. Advanced Textile Technology, 2024, 32(2): 1-8.
[2] XU Z, ZHOU F, YAN H, et al. Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at -30℃ [J]. Nano Energy, 2021, 90:106614.
[3] 陈岭,任孟,张德锁. rGO/MWCNT/PDMS 复合柔性压力传感器的制备与性能[J]. 现代纺织技术, 2023, 31 (5): 22-29.
CHEN Ling, REN Meng, ZHANG Desuo. Preparation and properties of rGO/MWCNT/PDMS composite flexible pressure sensors[J]. Advanced Textile Technology, 2023, 31(5): 22-29.
[4] ZHANG L, WANG J, WANG S, et al. Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors[J]. Journal of Materials Chemistry C, 2022, 10(11): 4327-4335.
[5] YANG Z, HUANG R, ZHENG B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing[J]. Advanced Science, 2021, 8(8):2003627.
[6] ZHAO X, WANG H, LUO J, et al. Ultrastretchable, adhesive, anti-freezing, conductive, and self-healing hydrogel for wearable devices[J]. ACS Applied Polymer Materials, 2022, 4(3): 1784-1793.
[7] ZHAO Z, FANG R, RONG Q, et al. Bioinspired nanocomposite hydrogels with highly ordered structures[J]. Advanced Materials, 2017, 29(45):1703045.
[8] LIU X, LIU J, LIN S, et al. Hydrogel machines[J]. Materials Today, 2020, 36: 102-124.
[9] KAUR R, GOYAL D, AGNIHOTRI S. Chitosan/PVA silver nanocomposite for butachlor removal: Fabrication, characterization, adsorption mechanism and isotherms[J]. Carbohydrate Polymers, 2021, 262:117906.
[10] PEI M, PENG X, WAN T, et al. Double cross-linked poly(vinyl alcohol) microcomposite hydrogels with high strength and cell compatibility[J]. European Polymer Journal, 2021, 160:110786.
[11] IMANISHI A, KIMURA A, MIYAMOTO H, et al. Human organ phantoms for catheterization using the radiation crosslinking technique[J]. Journal of Applied Polymer Science, 2021, 138(33):50818.
[12] LIU B, HUANG W, YANG G, et al. Preparation of gelatin/poly (γ-glutamic acid) hydrogels with stimulated response by hot-pressing preassembly and radiation crosslinking[J]. Materials Science and Engineering: C, 2020, 116:111259.
[13] FU X, LI J, TANG C, et al. Hydrogel cryo-microtomy continuously making soft electronic devices[J]. Advanced Functional Materials, 2021, 31(7):2008355.
[14] WANG F, LI Z, GUO J, et al. Highly strong, tough, and stretchable conductive hydrogels based on silk sericin-mediated multiple physical interactions for flexible sensors[J]. ACS Applied Polymer Materials, 2022, 4(1): 618-626.
[15] GUAN Y, BIAN J, PENG F, et al. High strength of hemicelluloses based hydrogels by freeze/thaw technique [J]. Carbohydrate Polymers, 2014, 101: 272-280.
[16] BUTYLINA S, GENG S, OKSMAN K. Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique[J]. European Polymer Journal, 2016, 81: 386-396.
[17] ZHANG W, WANG R, SUN Z, et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications[J]. Chemical Society Reviews, 2020, 49(2): 433-464.
[18] JAVANBAKHT S, POORESMAEIL M, HASHEMI H, et al. Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery[J]. International Journal of Biological Macromolecules, 2018, 119: 588-596.
[19] ZHANG H, SHEN H, LAN J, et al. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors[J]. Carbohydrate Polymers, 2022, 295:119848.
[20] CARPA R, FARKAS A, DOBROTA C, et al. Double-network chitosan-based hydrogels with improved mechanical, conductive, antimicrobial, and antibiofouling properties[J]. Gels, 2023, 9(4):278.
[21] CHEN Y, DAI H, YAN Y, et al. Polyacrylamide-Poly(vinyl alcohol)-sodium alginate-reduced graphene oxide/nylon fabrics with multistimuli responses[J]. ACS Applied Polymer Materials, 2023, 5(10): 7766-7773.
[22] FANG J, MENG C, ZHANG G, et al. High-performance flexible PANI/PLA textiles with antibacterial, flame retardant and electromagnetic shielding for all-solid-state supercapacitors and sensors[J]. Fibers and Polymers, 2023, 24(3): 1015-1028.
[23] LI Q, XU Z, DU X, et al. Microfluidic-directed hydrogel fabrics based on interfibrillar self-healing effects[J]. Chemistry of Materials, 2018, 30(24): 8822-8828.
[24] LV A, LV X, TIAN S, et al. Tough, self-healing, and antimicrobial hydrogel sensors based on hydrogen-bonded, cross-linked chitosan and MWCNTs[J]. ACS Applied Polymer Materials, 2023, 5(8): 6452-6462.
[25] ZHENG H, LIN N, HE Y, et al. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031.
[26] HU J, WU Y, YANG Q, et al. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring[J]. Carbohydrate Polymers, 2022, 275:118697.
[27] RONG Q, LEI W, CHEN L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angewandte Chemie (International Ed in English), 2017, 56(45): 14159-14163.
[28] 黄茵,王凯凯,鲜莉,等.可拉伸的PVA/CNC/NaCl导电水凝胶制备及柔性传感应用[J].山东化工,2022,51(23):88-91.
HUANG Yin, WANG Kaikai, XIAN Li, et al. Preparation of stretchable, conductive PVA/CNC/NaCl hydrogel and flexible sensing applications[J]. Shandong Chemical Industry, 2022, 51(23): 88-91.
|