[1] 韩梦瑶, 任松, 葛灿, 等. 用于个人热管理的被动调温服装材料研究进展[J]. 现代纺织技术, 2023, 31(1): 92-103.
HAN Mengyao, REN Song, GE Can, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management[J]. Advanced Textile Technology, 2023, 31(1): 92-103.
[2] 程喜慧, 陈萌, 窦跃杰, 等. 辐射制冷功能纺织品的研究进展[J]. 毛纺科技, 2024, 52(3): 132-137.
Cheng xihui, chen meng, dou yuejie, et al. Research progress of textiles with radiative cooling performance[J]. Wool Textile Journal, 2024, 52(03): 132-137.
[3] RAMAN A P, ABOU ANOMA M, ZHU L, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
[4] MA H, YAO K, DOU S, et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110584.
[5] 高璐, 鲍艳, 张文博, 等. 聚合物基日间辐射冷却材料的设计及应用[J]. 高分子通报, 2023, 36(9): 1158-1173.
GAO Lu, BAO Yan, ZHANG Wenbo, et al. Design and applications of polymer-based daytime radiative cooling materials[J]. Polymer Bulletin, 2023, 36(9): 1158-1173.
[6] LIN K, CHEN S, ZENG Y, et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity[J]. Science, 2023, 382(6671): 691-697.
[7] MANDAL J, FU Y, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319.
[8] XIANG B, ZHANG R, LUO Y, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600.
[9] ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
[10] 王慧迪, 薛朝华, 马超群, 等. 乙烯醋酸乙烯酯/二氧化硅超疏水辐射降温薄膜的制备及性能[J]. 高分子材料科学与工程, 2023, 39(9): 121-134.
WANG Huidi, XUE Chaohua, MA Chaoqun, et al. Fabrication of superhydrophobic porous poly(ethylene-vinyl acetate)/SiO2 film for daytime radiative cooling[J]. Polymer Materials Science and Engineering, 2023, 39(9): 121-134.
[11] 侯艺, 张佳文, 蔡英, 等. 超疏水抗紫外日间被动辐射制冷多孔涂层织物的制备及性能[J]. 丝绸, 2023, 60(10): 30-37.
HOU Yi, ZHANG Jiawen, CAI Ying, et al. Preparation and properties of superhydrophobic anti-ultraviolet porous coated fabrics for passive daytime radiative cooling[J]. Journal of Silk, 2023, 60(10): 30-37.
[12] LI N, WEI L, YOU M, et al. Hierarchically structural TiO2-PVDF fiber film with particle-enhanced spectral performance for radiative sky cooling[J]. Solar Energy, 2023, 259: 41-48.
[13] 孙诗婉,李欣,周涵.辐射冷却涂料及其在能源环境领域的应用[J/OL]. 化工进展: 1-9[2024-05-16]. https://doi.org/10.16085/j.issn.1000-6613.2023-1403.
SUN Shiwan, Ll Xin, ZHOU Han. Review of radiative cooling paint and applications in the fields of energy and environment[J/OL]. Chemical Industry and Engineering Progress: 1-9[2024-05-16]. https://doi.org/10.16085/j.issn.1000-6613.2023-1403.
[14] ZHOU K, YAN X, OH S J, et al. Hierarchically patterned self-cleaning polymer composites for daytime radiative cooling[J]. Nano Letters, 2023, 23(9): 3669-3677.
[15] ZHONG S, YI L, ZHANG J, et al. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling[J]. Chemical Engineering Journal, 2021, 407: 127104.
[16] JARAMILLO-FERNANDEZ J, WHITWORTH G L, PARIENTE J A, et al. A self-assembled 2D thermofunctional material for radiative cooling[J]. Small, 2019, 15(52): 1905290.
[17] 李慧慧, 王群, 贾伟科, 等. 多功能超疏水纺织品的制备及应用研究进展[J]. 现代纺织技术, 2022, 30(3): 39-46.
LI Huihui, WANG Qun, Jia Weike, et al. Recent advances in the fabrication and application of multi-functional super-hydrophobic textiles[J]. Advanced Textile Technology, 2022, 30(3): 39-46.
[18] 任方圆, 崔月芝, 刘利彬, 等. 透明超疏水材料的研究进展[J]. 化学通报, 2024, 87(2): 175-183.
REN Fangyuan, CUI Yuezhi, LIU Libin, et al. Research progress in transparent superhydrophobic materials[J]. Chemistry, 2024, 87(2): 175-183.
[19] XIANG B, ZHANG J. A new member of solar heat-reflective pigments: BaTiO3 and its effect on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)[J]. Solar Energy Materials and Solar Cells, 2018, 180: 67-75.
[20] CHEN M, PANG D, MANDAL J, et al. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling[J]. Nano Letters, 2021, 21(3): 1412-1418.
[21] GRANQVIST C G, HJORTSBERG A. Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films[J]. Journal of Applied Physics, 1981, 52(6): 4205-4220.
[22] WANG X, LIU X, LI Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020, 30(5): 1907562.
[23] Ding Z, Li H, Li X, et al. Designer SiO2 Metasurfaces for efficient passive radiative cooling[J]. Advanced Materials Interfaces, 2024, 11(3): 2300603.
[24] Zhou L, Rada J, Zhang H, et al. Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling[J]. Advanced Science, 2021, 8(23): 2102502.
|