Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (2): 9-17.DOI: 10.19398/j.att.202105023
• Comprehensive Review • Previous Articles Next Articles
SONG Jixian1, JIANG Hua1,2(), CUI Zhihua1,2, CHEN Weiguo1
Received:
2021-05-17
Online:
2022-03-10
Published:
2021-08-03
Contact:
JIANG Hua
通讯作者:
江华
作者简介:
宋吉贤(1997-),女,宁夏中卫人,硕士研究生,主要从事新型染色技术方面的研究。
基金资助:
CLC Number:
SONG Jixian, JIANG Hua, CUI Zhihua, CHEN Weiguo. Research progress of coloring technology for meta-aramid[J]. Advanced Textile Technology, 2022, 30(2): 9-17.
宋吉贤, 江华, 崔志华, 陈维国. 间位芳纶着色技术研究进展[J]. 现代纺织技术, 2022, 30(2): 9-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202105023
染色方法 | 优点 | 缺点 |
---|---|---|
超高温染色法 | 工艺简单 | 能耗高、需耐高 温型染料 |
载体染色法 | 节能降耗 | 载体气味大、有 毒且难去除 |
溶剂染色法 | 废水少 | 溶剂毒性大、回 收难、成本高 |
超临界CO2染色法 | 流程短、节能环保 | 对设备要求高 |
离子液体染色法 | 无毒、无污染 | 离子液体回收 难、损伤纤维 |
Tab.1 Advantages and disadvantages of dyeing method of unmodified aramid fiber
染色方法 | 优点 | 缺点 |
---|---|---|
超高温染色法 | 工艺简单 | 能耗高、需耐高 温型染料 |
载体染色法 | 节能降耗 | 载体气味大、有 毒且难去除 |
溶剂染色法 | 废水少 | 溶剂毒性大、回 收难、成本高 |
超临界CO2染色法 | 流程短、节能环保 | 对设备要求高 |
离子液体染色法 | 无毒、无污染 | 离子液体回收 难、损伤纤维 |
染色方法 | 特性 | 缺点 |
---|---|---|
共聚改性染/着色 | 纤维易染色或直接赋予颜色 | 机械性能可能改变 |
共混改性染色 | 操作简易、染色上染率高 | |
原液着色 | 无需后道染色工序 | 生产方式不灵活、不易换色 |
湿态纤维染色 | 纤维尚未完全干时染色 | 结晶与取向性质可能改变 |
高能射线辐照预处理染色 | 改性操作简易 | 损伤纤维 |
等离子体预处理染色 | 反应温和、不损伤纤维内部结构 | 时效短、损伤纤维表面 |
溶剂预处理染色 | 纤维膨化程度高 | 试剂难回收、不环保 |
试剂表面处理染色 | 增大纤维表面粗糙度 | |
接枝改性染色 | 染料与纤维结合力强 | 损伤纤维 |
超声波-微波联合处理染色 | 染料吸附好、扩散能力强 | 损伤纤维 |
Tab.2 Characteristics and disadvantages of aramid modified coloring method
染色方法 | 特性 | 缺点 |
---|---|---|
共聚改性染/着色 | 纤维易染色或直接赋予颜色 | 机械性能可能改变 |
共混改性染色 | 操作简易、染色上染率高 | |
原液着色 | 无需后道染色工序 | 生产方式不灵活、不易换色 |
湿态纤维染色 | 纤维尚未完全干时染色 | 结晶与取向性质可能改变 |
高能射线辐照预处理染色 | 改性操作简易 | 损伤纤维 |
等离子体预处理染色 | 反应温和、不损伤纤维内部结构 | 时效短、损伤纤维表面 |
溶剂预处理染色 | 纤维膨化程度高 | 试剂难回收、不环保 |
试剂表面处理染色 | 增大纤维表面粗糙度 | |
接枝改性染色 | 染料与纤维结合力强 | 损伤纤维 |
超声波-微波联合处理染色 | 染料吸附好、扩散能力强 | 损伤纤维 |
[1] | 孙晓婷, 郭亚. 高性能纤维的性能及应用[J]. 成都纺织高等专科学校学报, 2017, 34(2):216-219. |
SUN Xiaoting, GUO Ya. Properties and applications of high performance fiber[J]. Journal of Chengdu Textile College, 2017, 34(2):216-219. | |
[2] | 张蓓. 我国芳纶纤维的发展概况[J]. 精细与专用化学品, 2010, 18(10):6-9. |
ZHANG Bei. Review of the development on aramid fiber in China[J]. Fine and Specialty Chemicals, 2010, 18(10):6-9. | |
[3] | 立木信息咨询. 中国芳纶市场预测与投资价值报告(2021版)[EB/OL]. [2021-03-10]. http://www.Lmcmr.com/gongyecailiaozhipin/xincailiao/2012-11-22/1786.html. |
Limu Information Consulting. China aramid market forecast and investment value report (2021 Edition)[EB/OL]. [2021-03-10]. http://www.Lmcmr.com/gongyecailiaozhipin/xincailiao/2012-11-22/1786.html. | |
[4] | 立鼎产业研究网. 2019年全球芳纶产能分布及国内产能、市场需求、进出口量增长统计[EB/OL]. [2019-10-09]. http://www.Leadingir.com/datacenter/view/3946.html. |
Leading Industry Research Network. Global aramid production capacity distribution and Domestic production capacity, market demand, import and export volume growth statistics in 2019[EB/OL]. [2019-10-09]. http://www.Leadingir.com/datacenter/view/3946.html. | |
[5] | 袁玥, 李鹏飞, 凌新龙. 芳纶纤维的研究现状与进展[J]. 纺织科学与工程学报, 2019, 36(1):146-152. |
YUAN Yue, LI Pengfei, LING Xinlong. Research status and progress of aramid fiber[J]. Journal of Textile Science and Engineering, 2019, 36(1):146-152. | |
[6] | 吴赞敏, 吕彤, 赵婷. 间位芳纶纤维的载体染色[J]. 印染, 2005, 31(24):4-7. |
WU Zanmin, Lü Tong, ZHAO Ting. Carrier dyeing of meta-aramid fiber[J]. China Dyeing & Finishing, 2005, 31(24):4-7. | |
[7] | 朱利锋, 郝新敏. 芳纶1313的超高温高压染色研究[J]. 染料与染色, 2006, 43(4):24-26. |
ZHU Lifeng, HAO Xinmin. A study on dyeing poly-m-phenylene Isophthal amide at super-high temperature and super-high pressure[J]. Dyestuffsand Coloration, 2006, 43(4):24-26. | |
[8] | 华江楠, 王树根. 芳纶1313的超高温染色研究[J]. 毛纺科技, 2014, 42(2):7-10. |
HUA Jiangnan, WANG Shugen. Dyeing properties of aramid 1313 under ultra high temperature[J]. Wool Textile Journal, 2014, 42(2):7-10. | |
[9] | 梁萍, 汪澜, 林俊雄. 载体CindyeDnk对芳纶的作用机制[J]. 纺织学报, 2011, 32(2):21-25. |
LIANG Ping, WANG Lan, LIN Junxiong. Acting mechanism of carrier Cindye Dnk on aramid fibers[J]. Journal of Textile Research, 2011, 32(2):21-25. | |
[10] | 刘昭雪, 郑钧喜, 陈光杰. 芳纶织物的载体染色[J]. 印染, 2008, 34(13):19-21,30. |
LIU Zhaoxue, ZHENG Junxi, CHEN Guangjie. Carrier dyeing of aramid fiber[J]. China Dyeing & Finishing, 2008, 34(13):19-21, 30. | |
[11] | 赵晶, 崔淑玲. 间位芳纶的载体CZ-12分散染料染色[J]. 印染, 2016, 42(4):26-29. |
ZHAO Jing, CUI Shuling. Disperse dyeing of meta-aramid fiber with a novel carrier CZ-12[J]. China Dyeing & Finishing, 2016, 42(4):26-29. | |
[12] | 张帅, 谭艳君, 马新安, 等. 多聚磷酸处理对间位芳纶染色性能的影响[J]. 印染, 2019, 45(10):24-28. |
ZHANG Shuai, TAN Yanjun, MA Xin'an, et al. Effect of polyphosphoric acid treatment on dyeing performances of meta-aramid[J]. China Dyeing & Finishing, 2019, 45(10):24-28. | |
[13] |
SHENG D, WANG Y, WANG X, et al. Low-temperature dyeing of meta-aramid fabrics pretreated with 2-phenoxyethanol[J]. Coloration Technology, 2017, 133(4):320-324.
DOI URL |
[14] | 许晓锋, 郑庆康, 郑进渠, 等. 芳纶纤维的DEET载体染色[J]. 印染, 2014, 40(4):1-6. |
XU Xiaofeng, ZHENG Qingkang, ZHENG Jinqu, et al. Dyeing of aramid fibers with carrier DEET[J]. China Dyeing & Finishing, 2014, 40(4):1-6. | |
[15] | 余艳娥, 谭艳君, 樊增禄, 等. 芳纶织物的阳离子染料载体染色[J]. 印染, 2006, 32(12):25-26. |
YU Yan'e, TAN Yanjun, FAN Zenglu, et al. Aramid fabric dyeing with carrier-cationic dyes[J]. China Dyeing & Finishing, 2006, 32(12):25-26. | |
[16] | 王建明, 王鸿晓, 谢芳菲, 等. 芳纶1313染色性能[J]. 印染, 2009, 35(18):17-19. |
WANG Jianming, WANG Hongxiao, XIE Fangfei, et al. Dyeing properties of aramid fiber 1313[J]. China Dyeing & Finishing, 2009, 35(18):17-19. | |
[17] | 冯继红, 张庆, 吴玉娇. 芳纶织物的载体染色性能[J]. 印染, 2006, 32(19):8-9. |
FENG Jihong, ZHANG Qing, WU Yujiao. Carrier Dyeing of aramid fiber[J]. China Dyeing & Finishing, 2006, 32(19):8-9. | |
[18] |
PRESTON J, HOFFERBERT W L. A solvent-dyeing process for aramid fibers[J]. Textile Research Journal, 1979, 49(5):283-287.
DOI URL |
[19] |
KIM T, KIM G, PARK J Y, et al. Solubility measurement and dyeing performance evaluation of aramid NOMEX yarn by dispersed dyes in supercritical carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2006, 45(10):3425-3433.
DOI URL |
[20] |
ZHENG H D, ZHENG L J. Dyeing of meta-aramid fibers with disperse dyes in supercritical carbon dioxide[J]. Fibers and Polymers, 2014, 15(8):1627-1634.
DOI URL |
[21] | 刘轩, 张朋飞, 敖苏和, 等. 芳纶纱线的无水染色实验研究[J]. 轻纺工业与技术, 2020, 49(3):6-8. |
LIU Xuan, ZHANG Pengfei, AO Suhe, et al. Experimental study on anhydrous dyeing of aramid yarn[J]. Light and Textile Industry and Technology, 2020, 49(3):6-8. | |
[22] | 王明, 王萨丽, 李文杰, 等. 芳纶1414织物的[Bmim]Cl预处理及其染色[J]. 印染, 2018, 44(1):6-9. |
WANG Ming, WANG Sali, LI Wenjie, et al. Para-aramid fiber pretreatment by [Bmim]Cl and its dyeing behaviors[J]. China Dyeing & Finishing, 2018, 44(1):6-9. | |
[23] |
OPWIS K, CELIK B, BENKEN R, et al. Dyeing of m-aramid fibers in ionic liquids[J]. Polymers, 2020, 12(8):1824-1836.
DOI URL |
[24] |
LI N, ZHANG X K, YU J R. et al. Synjournal and characterization of easily colored meta-aramid copolymer containing ether bonds[J]. Chinese Journal of Polymer Science, 2019, 37(3):227-234.
DOI URL |
[25] |
TRIGO-LÓPEZ M, MIGUEL-ORTEGA Á, VALLEJOS S, et al. Intrinsically colored wholly aromatic polyamides (aramids)[J]. Dyes and Pigments, 2015, 122:177-183.
DOI URL |
[26] | 梁冰, 胡祖明, 于俊荣, 等. 可染间位芳纶的制备及性能研究[J]. 合成纤维工业, 2018, 41(2):26-30. |
LIANG Bing, HU Zuming, YU Junrong, et al. Preparation and properties of dyeable PMIA Fiber[J]. China Synthetic fiber Industry, 2018, 41(2):26-30. | |
[27] | 丁金玲. 酸性染料可染改性聚酯的合成与性能[D]. 北京:北京服装学院, 2008. |
DING Jinling. Study on the Synthesis and Performance of Acid-Dyestuff Dyeable Polyester[D]. Beijing: Beijing Institute of Fashion Technology, 2008. | |
[28] | 赵晓婷, 金剑, 王利平. 聚酯纤维原液着色技术的研究现状[J]. 合成纤维工业, 2018, 41(2):51-55. |
ZHAO Xiaoting, JIN Jian, WANG Liping. Research status of dyeing technology of polyester fiber dope[J]. China Synthetic fiber Industry, 2018, 41(2):51-55. | |
[29] | 刘立起, 陈蕾, 诸静, 等. 着色PMIA纤维结构与性能的研究[J]. 合成纤维, 2008, 37(3):17-19,24. |
LIU Liqi, CHEN Lei, ZHU Jing, et al. Study on structure and properties of dope-dyed poly(m- phenylene isophthalamide) fiber[J]. Synthetic Fiber in China, 2008, 37(3):17-19, 24. | |
[30] | 张媛婧. 间位芳香族聚酰胺原液着色纤维的制备及结构与性能研究[D]. 上海:东华大学, 2011. |
ZHANG Yuanjing. Study on Preparation, Structure and Properties of Dope Dyeing Meta-Aramid Fiber[D]. Shanghai: Donghua University, 2011. | |
[31] |
KOSUGE K, HATANO T, HORI T. Study on color-dyeable poly (p-phenylene terephthalamide)fiber[J]. Sen'i Gakkaishi, 2006, 62(1):19-23.
DOI URL |
[32] | 林琳, 于俊荣, 陈蕾, 等. 未干聚对苯二甲酰对苯二胺纤维的染色工艺[J]. 纺织学报, 2015, 36(8):84-88. |
LIN Lin, YU Junrong, CHEN Lei, et al. Dyeing process of undried poly(p-phenyleneterephthamid) fibers[J]. Journal of Textile Research, 2015, 36(8):84-88. | |
[33] | 刘清清, 郭荣辉. 芳纶纤维的改性研究进展[J]. 纺织科学与工程学报, 2020, 37(3):86-93. |
LIU Qingqing, GUO Ronghui. Research progress in modification of aramid fiber[J]. Journal of Textile Science and Engineering, 2020, 37(3):86-93. | |
[34] |
KIM E M, JANG J. Surface modification of meta-aramid films by UV/ozone irradiation[J]. Fibers and Polymers, 2010, 11(5):677-682.
DOI URL |
[35] | CHANG W, YANG M C, LIU W T, et al. Effects of ray radiation on the aramid fiber dyeing performance[C]// Proceeding of the 2016 Annual Conference of Henan Chemical Society. Xinyang, 2016: 343. |
[36] | 向坤, 熊德永, 陆轴, 等. 等离子体改性高性能纤维材料反应机理研究进展[J]. 工程塑料应用, 2020, 48(7):148-153. |
XIANG Kun, XIONG Deyong, LU Zhou, et al. Research progress in reaction mechanism of plasma modified high performance fiber materials[J]. Engineering Plastics Application, 2020, 48(7):148-153. | |
[37] | 陈平, 李虹, 王静, 等. 等离子体技术对高性能有机纤维表面改性的研究[J]. 纤维复合材料, 2008, 25(3):21-26. |
CHEN Ping, LI Hong, WANG Jing, et al. Studies on the surface modification of high performance organic fibers by the plasma technology[J]. Fiber Composites, 2008, 25(3):21-26. | |
[38] |
XI M, LI Y L, SHANG S Y, et al. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing[J]. Surface and Coatings Technology, 2008, 202(24):6029-6033.
DOI URL |
[39] | 沈丽, 曹淑华, 胡田, 等. 等离子体预处理的芳纶织物涂料印花性能[J]. 印染, 2010, 36(1):13-15. |
SHEN Li, CAO Shuhua, HU Tian, et al. Pigment printing of aramid fiber with plasma pretreatment[J]. China Dyeing & Finishing, 2010, 36(1):13-15. | |
[40] |
WANG C X, DU M, LV J C, et al. Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions[J]. Applied Surface Science, 2015, 349:333-342.
DOI URL |
[41] |
MOORE R A F, WEIGMANN H D. Dyeability of Nomex© aramid yarn[J]. Textile Research Journal, 1986, 56(4):254-260.
DOI URL |
[42] |
WANG C C, CHEN C C. Some physical properties of various amine-pretreated Nomex aramid yarns[J]. Journal of Applied Polymer Science, 2005, 96(1):70-76.
DOI URL |
[43] |
HAN S Y, JAUNG J Y. Acid dyeing properties of meta-aramid fiber pretreated with PEO45-MeDMA derived from [2-(methacryloyloxy)ethyl]trimethylammonium chloride[J]. Fibers and Polymers, 2009, 10(4):461-465.
DOI URL |
[44] | 滕芝盈, 单才华, 张华鹏. 极性溶剂对间位芳纶纤维结构与性能的影响[J]. 现代纺织技术, 2016, 24(2):1-3. |
TENG Zhiying, SHAN Caihua, ZHANG Huapeng. Influence of polar solvents on structure and properties of m-aramid fiber[J]. Advanced Textile Technology, 2016, 24(2):1-3. | |
[45] | 朱大勇. 芳纶纤维表面改性及其性能的研究[D]. 贵阳:贵州大学, 2018. |
ZHU Dayong. Study on the Surface Modification and Properties of Aramid Fiber[D]. Guiyang: Guizhou University, 2018. | |
[46] |
XIA D, WANG L J. Sulfuric acid treatment of aramid fiber for improving the cationic dyeing performance[J]. Advanced Materials Research, 2012, 627:243-247.
DOI URL |
[47] | 陈炯枢, 陈学康, 刘相. 聚合物表面接枝改性方法和影响因素[J]. 科学技术与工程, 2007, 7(9):1997-2002. |
CHEN Jiongshu, CHEN Xuekang, LIU Xiang. Methods and influencing factors of polymer surface grafting modification[J]. Science Technology and Engineering, 2007, 7(9):1997-2002. | |
[48] |
KIM E M, MIN B G, JANG J. Reactive dyeing of meta-aramid fabrics photografted with dimethylaminopropyl methacrylamide[J]. Fibers and Polymers, 2011, 12(5):580-586.
DOI URL |
[49] | SA R, YAN Y, WEI Z, et al. Surface modification of aramid fibers by bio-inspired poly (dopamine)and epoxy functionalized silane grafting[J]. ACS applied materials & interfaces, 2014, 6(23):21730-21738. |
[50] | 王国建. 超声辅助浸渍改性MCM-41吸附剂的制备及其脱硫性能研究[D]. 大庆:东北石油大学, 2016. |
WANG Guojian. Study on Preparation of MCM-41 Molecular Sieve Adopting Ultrasonic Impregnation and Its Desulfurization Performance[D]. DAIQing: Northeast Petroleum University, 2016. | |
[51] | 吴国辉. 超声波处理对服用对位芳纶纤维染色性能的影响[J]. 印染助剂, 2017, 34(4):38-40. |
WU Guohui. Influence of ultrasonic treatment on the dyeing properties of para-aramid fiber[J]. Textile Auxiliaries, 2017, 34(4):38-40. | |
[52] |
AMESIMEKU J, FAN L H, JAKPA W Z, et al. Dyeing properties of meta-aramid fabric dyed with basic dye using ultrasonic-microwave irradiation[J]. Journal of Cleaner Production, 2021, 285:124844.
DOI URL |
[53] | 柯晓超, 邓东海, 阮爱先. 芳纶1313染整工艺探讨[J]. 印染, 2004, 30(15):27-28. |
KE Xiaochao, DENG Donghai, RUAN Aixian. Dyeing and finishing of aramid fiber 1313[J]. China Dyeing & Finishing, 2004, 30(15):27-28. |
[1] | ZHAN Kuihuaa, ZHU Jiacheng, BAI Lunb. Design of shedding mechanisms guided by coupler curves [J]. Advanced Textile Technology, 2024, 32(6): 61-69. |
[2] | LI Linhonga, b, YANG Jiea, b, JIANG Yanxuana, b, ZHU Haoa. Clothing image classification algorithm based on improved MobileNet v2#br# [J]. Advanced Textile Technology, 2024, 32(4): 93-103. |
[3] | ZHANG Yuexuan, LIU Ya, ZHUANG Xupin, QIU Mengying. Research progress in moisture-absorbing and quick-drying materials [J]. Advanced Textile Technology, 2024, 32(4): 114-124. |
[4] | ZHAO Haoming, ZHANG Tuanshan, MA Haoran, REN Jingqi. Research on the fabric defect detection algorithm based on semantic segmentation [J]. Advanced Textile Technology, 2024, 32(1): 27-35. |
[5] | CAO Hanying, TUO Jiying. A Method for Identifying Women's Sleeves Based on Improved YOLOv5 and ResNet50 [J]. Advanced Textile Technology, 2024, 32(1): 45-53. |
[6] | CHEN Linguoa, b, ZHANG Hongjuana, b, DING Leia, b, PEI Liujuna, b, WANG Jipinga, b. Research progress on alkali deweighting promoter for polyester fabrics [J]. Advanced Textile Technology, 2023, 31(6): 61-71. |
[7] | LOU Haoa, LÜ Wangyangb, CHEN Wenxinga, JIANG Wenbina, b. Design and simulation of a bucket-tipping device for cocoon feeding trolleys [J]. Advanced Textile Technology, 2023, 31(5): 132-141. |
[8] | GAO Min, ZOU Yanglin, CAO Xinwang. Fabric defect detection based on improved YOLOv5 model [J]. Advanced Textile Technology, 2023, 31(4): 155-163. |
[9] | YANG Xiaolong, LI Sheng, JIANG Wenbin. Design and analysis of automatic grabbing device for cocoons without end in supplier of correct end cocoons#br# [J]. Advanced Textile Technology, 2023, 31(3): 21-26. |
[10] | ZHAO Quanpenga, b, YANG Jianchenga, b, c, LIU Yanzhea, b, HUANG Ziwena, b. Topology optimization design and fatigue analysis of the warp tension regulating mechanism [J]. Advanced Textile Technology, 2023, 31(3): 27-35. |
[11] | LIN Wei, XUE Yuan, JIN Shulan, LUO Jun, LIU Qunhao. Morphological structure regulation mechanism of the chenille yarn and its spinning process design [J]. Advanced Textile Technology, 2023, 31(3): 36-44. |
[12] | LIU Yanzhea, b, c, YANG Jianchenga, b, c, HUANG Ziwena, b, c, ZHAO Quanpeng, LIU Jian. Effects of the elastic linkage on the front dead center position of the parallel beating-up mechanism [J]. Advanced Textile Technology, 2023, 31(3): 63-69. |
[13] | LU Jiayu, CAI Guoqiang, GAO Zongchun, SONG Jiangxiao, ZHANG Yan, QI dongming, . Review of commonly used antibacterial finishing agents for textiles [J]. Advanced Textile Technology, 2023, 31(3): 251-262. |
[14] | ZENG Huafu, YANG Jie, LI Linhong. Clothing image classification algorithm based on improved ShuffleNet v1 [J]. Advanced Textile Technology, 2023, 31(2): 23-. |
[15] | RUAN Mengyu, LI Min, HE Ruhan, YAO Xun. Fabric defect detection based on improved RefineDet [J]. Advanced Textile Technology, 2022, 30(5): 12-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||